/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/framework/op_registry.h" namespace paddle { namespace operators { template void IndexSampleGather(const paddle::platform::NPUDeviceContext& dev_ctx, const phi::DenseTensor* index, const phi::DenseTensor* input, phi::DenseTensor* out) { auto index_dims = index->dims(); auto input_dims = input->dims(); auto batch_size = input_dims[0]; auto index_length = index_dims[1]; std::vector gather_index_vec; std::vector index_vec; framework::TensorToVector(*index, dev_ctx, &index_vec); for (auto i = 0; i < batch_size; ++i) { for (auto j = 0; j < index_length; j++) { gather_index_vec.push_back(i); gather_index_vec.push_back(index_vec[i * index_length + j]); } } phi::DenseTensor gather_index; framework::TensorFromVector(gather_index_vec, dev_ctx, &gather_index); gather_index.Resize({batch_size, index_length, 2}); NpuOpRunner runner; runner.SetType("GatherNd") .AddInput(*input) .AddInput(gather_index) .AddOutput(*out); runner.Run(dev_ctx.stream()); } template class IndexSampleNPUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto& dev_ctx = ctx.template device_context(); auto* input = ctx.Input("X"); auto* index = ctx.Input("Index"); auto* out = ctx.Output("Out"); out->mutable_data(ctx.GetPlace()); const auto& index_type = framework::TransToProtoVarType(index->dtype()); if (index_type == framework::proto::VarType::INT32) { IndexSampleGather(dev_ctx, index, input, out); } else { IndexSampleGather(dev_ctx, index, input, out); } } }; template void IndexSampleGradScatter(const paddle::platform::NPUDeviceContext& dev_ctx, const phi::DenseTensor* index, const phi::DenseTensor* out_grad, phi::DenseTensor* x_grad) { auto index_dims = index->dims(); auto input_dims = x_grad->dims(); auto batch_size = input_dims[0]; auto index_length = index_dims[1]; std::vector scatter_index_vec; std::vector index_vec; framework::TensorToVector(*index, dev_ctx, &index_vec); for (auto i = 0; i < batch_size; ++i) { for (auto j = 0; j < index_length; j++) { scatter_index_vec.push_back(i); scatter_index_vec.push_back(index_vec[i * index_length + j]); } } phi::DenseTensor scatter_index; framework::TensorFromVector(scatter_index_vec, dev_ctx, &scatter_index); scatter_index.Resize({batch_size, index_length, 2}); NpuOpRunner runner; runner.SetType("ScatterNd") .AddInput(scatter_index) .AddInput(*out_grad) .AddInput(phi::vectorize(x_grad->dims())) .AddOutput(*x_grad); runner.Run(dev_ctx.stream()); } template class IndexSampleGradNPUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto& dev_ctx = ctx.template device_context(); auto* index = ctx.Input("Index"); auto* out_grad = ctx.Input(framework::GradVarName("Out")); auto* x_grad = ctx.Output(framework::GradVarName("X")); x_grad->mutable_data(ctx.GetPlace()); const auto& index_type = framework::TransToProtoVarType(index->dtype()); if (index_type == framework::proto::VarType::INT32) { IndexSampleGradScatter(dev_ctx, index, out_grad, x_grad); } else { IndexSampleGradScatter(dev_ctx, index, out_grad, x_grad); } } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; namespace plat = paddle::platform; REGISTER_OP_NPU_KERNEL(index_sample, ops::IndexSampleNPUKernel, ops::IndexSampleNPUKernel, ops::IndexSampleNPUKernel, ops::IndexSampleNPUKernel); REGISTER_OP_NPU_KERNEL(index_sample_grad, ops::IndexSampleGradNPUKernel, ops::IndexSampleGradNPUKernel, ops::IndexSampleGradNPUKernel, ops::IndexSampleGradNPUKernel);