# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # Copyright (c) 2022 NVIDIA Corporation. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle from paddle import fluid from paddle.fluid import core from paddle.incubate.asp import ASPHelper paddle.enable_static() class TestASPStaticPruningBase(unittest.TestCase): def setUp(self): self.main_program = fluid.Program() self.startup_program = fluid.Program() def build_model(): img = paddle.static.data( name='img', shape=[None, 3, 24, 24], dtype='float32' ) label = paddle.static.data( name='label', shape=[None, 1], dtype='int64' ) hidden = paddle.static.nn.conv2d( input=img, num_filters=2, filter_size=3, padding=2, act="relu" ) hidden = paddle.static.nn.fc( x=hidden, size=32, activation='softmax' ) hidden = paddle.static.nn.fc(x=hidden, size=3, activation='softmax') prediction = paddle.static.nn.fc( x=hidden, size=3, activation='softmax' ) return img, label, prediction with fluid.program_guard(self.main_program, self.startup_program): self.img, self.label, self.predict = build_model() self.set_config() def set_config(self): self.mask_gen_func = 'mask_1d' self.mask_check_func = paddle.incubate.asp.CheckMethod.CHECK_1D def test_inference_pruning(self): place = paddle.CPUPlace() if core.is_compiled_with_cuda(): place = paddle.CUDAPlace(0) exe = fluid.Executor(place) self.__pruning_and_checking(exe, place, False) def test_training_pruning(self): with fluid.program_guard(self.main_program, self.startup_program): loss = paddle.mean( paddle.nn.functional.cross_entropy( input=self.predict, label=self.label, reduction='none', use_softmax=False, ) ) optimizer = paddle.incubate.asp.decorate( fluid.optimizer.SGD(learning_rate=0.01) ) optimizer.minimize(loss, self.startup_program) place = paddle.CPUPlace() if core.is_compiled_with_cuda(): place = paddle.CUDAPlace(0) exe = fluid.Executor(place) self.__pruning_and_checking(exe, place, True) def __pruning_and_checking(self, exe, place, with_mask): exe.run(self.startup_program) paddle.incubate.asp.prune_model( self.main_program, mask_algo=self.mask_gen_func, with_mask=with_mask ) for param in self.main_program.global_block().all_parameters(): if ASPHelper._is_supported_layer(self.main_program, param.name): mat = np.array( fluid.global_scope().find_var(param.name).get_tensor() ) if (len(param.shape) == 4 and param.shape[1] < 4) or ( len(param.shape) == 2 and param.shape[0] < 4 ): self.assertFalse( paddle.incubate.asp.check_sparsity(mat.T, n=2, m=4) ) else: self.assertTrue( paddle.incubate.asp.check_sparsity( mat.T, func_name=self.mask_check_func, n=2, m=4 ) ) class TestASPStaticPruning1D(TestASPStaticPruningBase): def set_config(self): self.mask_gen_func = 'mask_1d' self.mask_check_func = paddle.incubate.asp.CheckMethod.CHECK_1D class TestASPStaticPruning2DBest(TestASPStaticPruningBase): def set_config(self): self.mask_gen_func = 'mask_2d_best' self.mask_check_func = paddle.incubate.asp.CheckMethod.CHECK_2D class TestASPStaticPruning2DGreedy(TestASPStaticPruningBase): def set_config(self): self.mask_gen_func = 'mask_2d_greedy' self.mask_check_func = paddle.incubate.asp.CheckMethod.CHECK_2D if __name__ == '__main__': unittest.main()