# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .optimizer import Optimizer from ..fluid import core from ..fluid import framework from ..fluid.framework import Variable, name_scope from ..fluid.dygraph import no_grad __all__ = [] class SGD(Optimizer): r""" Optimizer of the stochastic gradient descent algorithm. .. math:: param\_out = param - learning\_rate * grad Parameters: learning_rate (float|Tensor|LearningRateDecay, optional): The learning rate used to update ``Parameter``. It can be a float value, a ``Tensor`` with a float type or a LearningRateDecay. The default value is 0.001. parameters (list|tuple, optional): List/Tuple of ``Tensor`` to update to minimize ``loss``. \ This parameter is required in dygraph mode. \ The default value is None in static mode, at this time all parameters will be updated. weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \ It canbe a float value as coeff of L2 regularization or \ :ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`. If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already, \ the regularization setting here in optimizer will be ignored for this parameter. \ Otherwise, the regularization setting here in optimizer will take effect. \ Default None, meaning there is no regularization. grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of some derived class of ``GradientClipBase`` . There are three cliping strategies ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping. name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . Examples: .. code-block:: python import paddle import numpy as np inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32") linear = paddle.nn.Linear(10, 10) inp = paddle.to_tensor(inp) out = linear(inp) loss = paddle.mean(out) beta1 = paddle.to_tensor([0.9], dtype="float32") beta2 = paddle.to_tensor([0.99], dtype="float32") sgd = paddle.optimizer.SGD(learning_rate=0.1, parameters=linear.parameters(), weight_decay=0.01) back = out.backward() sgd.step() sgd.clear_grad() """ def __init__(self, learning_rate=0.001, parameters=None, weight_decay=None, grad_clip=None, name=None): if learning_rate is None: raise ValueError("learning_rate is not set") super(SGD, self).__init__( learning_rate=learning_rate, parameters=parameters, weight_decay=weight_decay, grad_clip=grad_clip, name=name) self.type = "sgd" @no_grad def _append_optimize_op(self, block, param_and_grad): if isinstance(param_and_grad, dict): param_and_grad = self._update_param_group(param_and_grad) lr = self._create_param_lr(param_and_grad) if framework.in_dygraph_mode(): core.ops.sgd(param_and_grad[0], lr, param_and_grad[1], param_and_grad[0]) return None assert isinstance(block, framework.Block) # create the optimize op sgd_op = block.append_op( type=self.type, inputs={ "Param": param_and_grad[0], "Grad": param_and_grad[1], "LearningRate": lr }, outputs={"ParamOut": param_and_grad[0]}, stop_gradient=True) return sgd_op def _update_param_group(self, parameters): parameters = parameters.get('params') return parameters