# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from copy import copy from typing import Any, Dict, List, Tuple from tests_utils import is_attr, is_input, is_output, is_vec from type_mapping import opmaker_attr_types_map def to_named_dict(items: List[Dict]) -> Dict[str, Dict]: named_dict = {} for item in items: if "name" not in item: raise KeyError(f"name not in {item}") name = item["name"] named_dict[name] = item return named_dict def parse_arg(op_name: str, s: str) -> Dict[str, str]: """parse an argument in following formats: 1. typename name 2. typename name = default_value """ typename, rest = [item.strip() for item in s.split(" ", 1)] assert ( len(typename) > 0 ), f"The arg typename should not be empty. Please check the args of {op_name} in yaml." assert ( rest.count("=") <= 1 ), f"There is more than 1 = in an arg in {op_name}" if rest.count("=") == 1: name, default_value = [item.strip() for item in rest.split("=", 1)] assert ( len(name) > 0 ), f"The arg name should not be empty. Please check the args of {op_name} in yaml." assert ( len(default_value) > 0 ), f"The default value should not be empty. Please check the args of {op_name} in yaml." return { "typename": typename, "name": name, "default_value": default_value, } else: name = rest.strip() assert ( len(name) > 0 ), f"The arg name should not be empty. Please check the args of {op_name} in yaml." return {"typename": typename, "name": name} def parse_input_and_attr( op_name: str, arguments: str ) -> Tuple[List, List, Dict, Dict]: args_str = arguments.strip() assert args_str.startswith('(') and args_str.endswith(')'), ( f"Args declaration should start with '(' and end with ')', " f"please check the args of {op_name} in yaml." ) args_str = args_str[1:-1] args = parse_plain_list(args_str) inputs = [] attrs = [] met_attr_with_default_value = False for arg in args: item = parse_arg(op_name, arg) typename = item["typename"] name = item["name"] if is_input(typename): assert len(attrs) == 0, ( f"The input Tensor should appear before attributes. " f"please check the position of {op_name}:input({name}) " f"in yaml." ) inputs.append(item) elif is_attr(typename): if met_attr_with_default_value: assert ( "default_value" in item ), f"{op_name}: Arguments with default value should not precede those without default value" elif "default_value" in item: met_attr_with_default_value = True if typename.startswith('Scalar') or typename == 'IntArray': item['data_type'] = opmaker_attr_types_map[typename] attrs.append(item) else: raise KeyError(f"{op_name}: Invalid argument type {typename}.") return inputs, attrs def parse_output(op_name: str, s: str) -> Dict[str, str]: """parse an output, typename or typename(name).""" match = re.search( r"(?P[a-zA-Z0-9_[\]]+)\s*(?P\([a-zA-Z0-9_@]+\))?\s*(?P\{[^\}]+\})?", s, ) typename = match.group("out_type") name = match.group("name") size_expr = match.group("expr") name = name[1:-1] if name is not None else 'out' size_expr = size_expr[1:-1] if size_expr is not None else None assert is_output(typename), ( f"Invalid output type: {typename} in op : {op_name}." f"Supported types are Tensor and Tensor[]" ) if size_expr is not None: assert is_vec(typename), ( f"Invalid output size: output {name} in op : {op_name} is " f"not a vector but has size expr" ) return {"typename": typename, "name": name, "size": size_expr} else: return {"typename": typename, "name": name} def parse_outputs(op_name: str, outputs: str) -> List[Dict]: outputs = parse_plain_list(outputs, sep=",") output_items = [] for output in outputs: output_items.append(parse_output(op_name, output)) return output_items def parse_infer_meta(infer_meta: Dict[str, Any]) -> Dict[str, Any]: infer_meta = copy(infer_meta) # to prevent mutating the input if "param" not in infer_meta: infer_meta["param"] = None return infer_meta def parse_candidates(s: str) -> Dict[str, Any]: "parse candidates joined by either '>'(ordered) or ','(unordered)" delimiter = ">" if ">" in s else "," ordered = delimiter == ">" candidates = parse_plain_list(s, delimiter) return {"ordered": ordered, "candidates": candidates} def parse_plain_list(s: str, sep=",") -> List[str]: items = [item.strip() for item in s.strip().split(sep)] return items def parse_kernel(op_name: str, kernel_config: Dict[str, Any]) -> Dict[str, Any]: # kernel : # func : [], Kernel functions (example: scale, scale_sr) # param : [], Input params of kernel # backend : str, the names of param to choose the kernel backend, default is None # layout : str, the names of param to choose the kernel layout, default is None # data_type : str, the names of param to choose the kernel data_type, default is None # dispatch : {}, the key is kernel_func, the value is type of inputs and outputs for kernel (example: {kernel_name : (['dense','sparse_coo']#input,['sparse_coo']#output)}) kernel = { 'func': [], # up to 2 function names 'param': None, 'backend': None, 'layout': None, 'data_type': None, 'dispatch': {}, 'force_backend': None, } if 'param' in kernel_config: kernel['param'] = kernel_config['param'] if 'force_backend' in kernel_config: kernel['force_backend'] = kernel_config["force_backend"] if 'backend' in kernel_config: kernel['backend'] = parse_candidates(kernel_config["backend"]) if 'layout' in kernel_config: kernel['layout'] = parse_candidates(kernel_config["layout"]) if 'data_type' in kernel_config: data_type_item = parse_candidates(kernel_config["data_type"]) params_num = len(data_type_item['candidates']) data_type_item['to_complex_flag'] = [False] * params_num for i in range(params_num): complex_match_result = re.match( r"complex\((?P\w+)\)", data_type_item['candidates'][i], ) if complex_match_result: data_type_item['candidates'][i] = complex_match_result.group( 'param_name' ) data_type_item['to_complex_flag'][i] = True kernel['data_type'] = data_type_item kernel_funcs = re.compile(r'([a-zA-Z0-9_]+)\s*({[^}]+})?').findall( kernel_config['func'] ) def parse_kernel_in_out_type(in_out_str): if len(in_out_str) == 0: return None tmp_in_out_list = in_out_str[1:-1].split('->') inputs = [item.strip() for item in tmp_in_out_list[0].split(',')] outputs = [item.strip() for item in tmp_in_out_list[1].split(',')] # check the tensor type for item in inputs: assert item in [ 'dense', 'selected_rows', 'sparse_coo', 'sparse_csr', ], f"{op_name} : Invalid input tensor type ('{item}'), here we only support 'dense', 'selected_rows', 'sparse_coo' and 'sparse_csr'." for item in outputs: assert item in [ 'dense', 'selected_rows', 'sparse_coo', 'sparse_csr', ], f"{op_name} : Invalid output tensor type ('{item}'), here we only support 'dense', 'selected_rows', 'sparse_coo' and 'sparse_csr'." return (inputs, outputs) for func_item in kernel_funcs: kernel['func'].append(func_item[0]) kernel['dispatch'][func_item[0]] = parse_kernel_in_out_type( func_item[1] ) return kernel def parse_inplace(op_name: str, inplace_cfg: str) -> Dict[str, str]: inplace_map = {} inplace_cfg = inplace_cfg.lstrip("(").rstrip(")") pairs = parse_plain_list(inplace_cfg) for pair in pairs: in_name, out_name = parse_plain_list(pair, sep="->") inplace_map[out_name] = in_name return inplace_map def parse_invoke(op_name: str, invoke_config: str) -> Dict[str, Any]: invoke_config = invoke_config.strip() func, rest = invoke_config.split("(", 1) func = func.strip() args = rest.rstrip(")").strip() invocation = {"func": func, "args": args} return invocation def extract_type_and_name(records: List[Dict]) -> List[Dict]: """extract type and name from forward call, it is simpler than forward op .""" extracted = [ {"name": item["name"], "typename": item["typename"]} for item in records ] return extracted def parse_forward(op_name: str, forward_config: str) -> Dict[str, Any]: # op_name (const Tensor& input, ... , int attr, ...) -> Tensor(out) result = re.search( r"(?P[a-z][a-z0-9_]+)\s*(?P\([^\)]+\))\s*->\s*(?P.+)", forward_config, ) op = result.group("op") outputs = parse_outputs(op_name, result.group("outputs")) outputs = extract_type_and_name(outputs) inputs, attrs = parse_input_and_attr(op_name, result.group("args")) inputs = extract_type_and_name(inputs) attrs = extract_type_and_name(attrs) forward_cfg = { "name": op, "inputs": inputs, "attrs": attrs, "outputs": outputs, } return forward_cfg def parse_composite( op_name: str, composite_config: str, ) -> Dict[str, Any]: # composite_config: func(args1, args2,.....) result = re.search( r"(?P[a-z][a-z0-9_]+)\s*\((?P[^\)]+)\)", composite_config, ) func_name = result.group("func_name") func_args = result.group("func_args") composite_dict = {} composite_dict["func_name"] = func_name composite_dict["func_args"] = func_args return composite_dict def check_op_config(op_entry, op_name): base_key_set = ( 'op', 'backward_op', 'forward', 'args', 'output', 'infer_meta', 'kernel', 'backward', 'invoke', 'inplace', 'view', 'optional', 'intermediate', 'no_need_buffer', 'data_transform', 'composite', ) infer_meta_key_set = ('func', 'param') kernel_key_set = ( 'func', 'param', 'data_type', 'layout', 'backend', 'force_backend', ) for key in op_entry.keys(): assert ( key in base_key_set ), f"Op ({op_name}) : invalid key ({key}) in Yaml." if 'infer_meta' in op_entry: for infer_meta_key in op_entry['infer_meta'].keys(): assert ( infer_meta_key in infer_meta_key_set ), f"Op ({op_name}) : invalid key (infer_meta.{infer_meta_key}) in Yaml." if 'kernel' in op_entry: for kernel_key in op_entry['kernel'].keys(): assert ( kernel_key in kernel_key_set ), f"Op ({op_name}) : invalid key (kernel.{kernel_key}) in Yaml." def parse_op_entry(op_entry: Dict[str, Any], name_field="op"): op_name = op_entry[name_field] inputs, attrs = parse_input_and_attr(op_name, op_entry["args"]) outputs = parse_outputs(op_name, op_entry["output"]) if "composite" in op_entry: composite_dict = parse_composite(op_name, op_entry["composite"]) check_op_config(op_entry, op_name) # validate default value of DataType and DataLayout for attr in attrs: if "default_value" in attr: typename = attr["typename"] default_value = attr["default_value"] if typename == "DataType": assert ( "DataType" in default_value ), f"invalid DataType default value in {op_name}" # remove namespace default_value = default_value[default_value.find("DataType") :] attr["default_value"] = default_value elif typename == "DataLayout": assert ( "DataLayout" in default_value ), f"invalid DataLayout default value in {op_name}" default_value = default_value[ default_value.find("DataLayout") : ] attr["default_value"] = default_value input_names = [item["name"] for item in inputs] attr_names = [item["name"] for item in attrs] output_names = [item["name"] for item in outputs] # add optional tag for every input for input in inputs: input["optional"] = False for output in outputs: output["optional"] = False if "optional" in op_entry: optional_args = parse_plain_list(op_entry["optional"]) for name in optional_args: assert ( name in input_names or name in output_names ), f"{op_name} has an optional tensor: '{name}' which is not in input or output." for input in inputs: if input["name"] in optional_args: input["optional"] = True for output in outputs: if output["name"] in optional_args: output["optional"] = True # add intermediate tag for every output for output in outputs: output["intermediate"] = False if "intermediate" in op_entry: intermediate_outs = parse_plain_list(op_entry["intermediate"]) for name in intermediate_outs: assert ( name in output_names ), f"{op_name} has an intermediate output: '{name}' which is not an output." for output in outputs: if output["name"] in intermediate_outs: output["intermediate"] = True # add no_need_buffer for every input for input in inputs: input["no_need_buffer"] = False if "no_need_buffer" in op_entry: no_buffer_args = parse_plain_list(op_entry["no_need_buffer"]) for name in no_buffer_args: assert ( name in input_names ), f"{op_name} has an no buffer input: '{name}' which is not an input." for input in inputs: if input["name"] in no_buffer_args: input["no_need_buffer"] = True else: no_buffer_args = None # add data_transform tag for every input. # the format is {data_transform : {skip_transform : [x, z], support_trans_dtype : y}} for input in inputs: input["data_transform"] = {} if "data_transform" in op_entry: skip_trans_args = [] support_trans_args = [] data_trans = op_entry["data_transform"] if "skip_transform" in data_trans: skip_trans_args = parse_plain_list(data_trans["skip_transform"]) for name in skip_trans_args: assert ( name in input_names ), f"{op_name} has an skip_transform input: '{name}' which is not an input." data_trans["skip_transform"] = skip_trans_args if "support_trans_dtype" in data_trans: support_trans_args = parse_plain_list( data_trans["support_trans_dtype"] ) for name in support_trans_args: assert ( name in input_names ), f"{op_name} has an support_trans_dtype input: '{name}' which is not an input." data_trans["support_trans_dtype"] = support_trans_args for input in inputs: if input["name"] in skip_trans_args: input["data_transform"]["skip_trans_args"] = True else: input["data_transform"]["skip_trans_args"] = False if input["name"] in support_trans_args: input["data_transform"]["support_trans_dtype"] = True else: input["data_transform"]["support_trans_dtype"] = False else: data_trans = None op = { "name": op_name, "inputs": inputs, "attrs": attrs, "outputs": outputs, "no_need_buffer": no_buffer_args, "data_transform": data_trans, } # invokes another op ? is_base_op = "invoke" not in op_entry if is_base_op: # kernel kernel = parse_kernel(op_name, op_entry["kernel"]) if kernel["param"] is None: kernel["param"] = input_names + attr_names # infer meta infer_meta = parse_infer_meta(op_entry["infer_meta"]) if infer_meta["param"] is None: infer_meta["param"] = copy(kernel["param"]) # inplace if "inplace" in op_entry: inplace_pairs = parse_inplace(op_name, op_entry["inplace"]) else: inplace_pairs = None op.update( { "infer_meta": infer_meta, "kernel": kernel, "inplace": inplace_pairs, } ) else: # invoke invoke = parse_invoke(op_name, op_entry["invoke"]) op["invoke"] = invoke # has composite ? if "composite" in op_entry: op.update({"composite": composite_dict}) # backward if "backward" in op_entry: backward = op_entry["backward"] else: backward = None op["backward"] = backward # forward for backward_ops is_backward_op = name_field == "backward_op" if is_backward_op: if "forward" in op_entry: forward = parse_forward(op_name, op_entry["forward"]) # validate_fb validate_backward_inputs( op_name, forward["inputs"], forward["outputs"], inputs ) validate_backward_attrs(op_name, forward["attrs"], attrs) validate_backward_outputs(op_name, forward["inputs"], outputs) else: forward = None op["forward"] = forward return op def validate_backward_attrs(op, forward_attrs, backward_attrs): if len(forward_attrs) >= len(backward_attrs): return num_exceptional_attrs = len(backward_attrs) - len(forward_attrs) # this is a not-that-clean trick to allow backward op to has more attrs # than the forward op , as long as they all have default value for i in range(-num_exceptional_attrs, 0): assert ( "default_value" in backward_attrs[i] ), f"{op } has exceptional attr without default value" def validate_backward_inputs( op, forward_inputs, forward_outputs, backward_inputs ): foward_input_names = [item["name"] for item in forward_inputs] forward_output_names = [item["name"] for item in forward_outputs] backward_input_names = [item["name"] for item in backward_inputs] assert len(backward_input_names) <= len(foward_input_names) + 2 * len( forward_output_names ), f"{op } has too many inputs." def validate_backward_outputs(op, forward_inputs, backward_outputs): assert len(backward_outputs) <= len( forward_inputs ), f"{op } has too many outputs" def cross_validate(ops): for name, op in ops.items(): if "forward" in op: fw_call = op["forward"] fw_name = fw_call["name"] if fw_name not in ops: print( f"Something Wrong here, this backward op ({name})'s forward op ({fw_name}) does not exist." ) else: fw_op = ops[fw_name] if "backward" not in fw_op or fw_op["backward"] is None: print( f"Something Wrong here, {name}'s forward op ({fw_name}) does not claim {name} as its backward." ) else: assert ( fw_op["backward"] == name ), f"{name}: backward and forward name mismatch" assert len(fw_call["inputs"]) <= len( fw_op["inputs"] ), f"{name}: forward call has more inputs than the op " for (input, input_) in zip(fw_call["inputs"], fw_op["inputs"]): assert ( input["typename"] == input_["typename"] ), f"type mismatch in {name} and {fw_name}" assert len(fw_call["attrs"]) <= len( fw_op["attrs"] ), f"{name}: forward call has more attrs than the op " for (attr, attr_) in zip(fw_call["attrs"], fw_op["attrs"]): if attr["typename"] == "Scalar": # special case for Scalar, fw_call can omit the type assert re.match( r"Scalar(\(\w+\))*", attr_["typename"] ), f"type mismatch in {name} and {fw_name}" else: assert ( attr["typename"] == attr_["typename"] ), f"type mismatch in {name} and {fw_name}" assert len(fw_call["outputs"]) == len( fw_op["outputs"] ), f"{name}: forward call has more outputs than the op " for (output, output_) in zip( fw_call["outputs"], fw_op["outputs"] ): assert ( output["typename"] == output_["typename"] ), f"type mismatch in {name} and {fw_name}"