/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include "paddle/fluid/operators/matmul_v2_op.h" #include "paddle/fluid/operators/npu_op_runner.h" namespace paddle { namespace operators { template class MatMulV2NPUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* x = ctx.Input("X"); auto* y = ctx.Input("Y"); auto* out = ctx.Output("Out"); bool transpose_x = ctx.Attr("trans_x"); bool transpose_y = ctx.Attr("trans_y"); if (x->dims().size() == 2) { out->mutable_data(ctx.GetPlace()); auto runner = NpuOpRunner( "MatMul", {*x, *y}, {*out}, {{"transpose_x1", transpose_x}, {"transpose_x2", transpose_y}}); auto stream = ctx.template device_context() .stream(); runner.Run(stream); } else if (x->dims().size() > 2) { out->mutable_data(ctx.GetPlace()); auto runner = NpuOpRunner("BatchMatMul", {*x, *y}, {*out}, {{"adj_x1", transpose_x}, {"adj_x2", transpose_y}}); auto stream = ctx.template device_context() .stream(); runner.Run(stream); } } }; template class MatMulV2GradNPUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* x = ctx.Input("X"); auto* y = ctx.Input("Y"); auto* dout = ctx.Input(framework::GradVarName("Out")); auto* dx = ctx.Output(framework::GradVarName("X")); auto* dy = ctx.Output(framework::GradVarName("Y")); bool transpose_y = ctx.Attr("trans_y"); auto stream = ctx.template device_context() .stream(); if (x->dims().size() == 2) { if (transpose_y) { if (dx) { dx->mutable_data(ctx.GetPlace()); auto runner_dx = NpuOpRunner("MatMul", {*dout, *y}, {*dx}, {{"transpose_x1", false}, {"transpose_x2", false}}); runner_dx.Run(stream); } if (dy) { dy->mutable_data(ctx.GetPlace()); auto runner_dy = NpuOpRunner("MatMul", {*dout, *x}, {*dy}, {{"transpose_x1", true}, {"transpose_x2", false}}); runner_dy.Run(stream); } } else { if (dx) { dx->mutable_data(ctx.GetPlace()); auto runner_dx = NpuOpRunner("MatMul", {*dout, *y}, {*dx}, {{"transpose_x1", false}, {"transpose_x2", true}}); runner_dx.Run(stream); } if (dy) { dy->mutable_data(ctx.GetPlace()); auto runner_dy = NpuOpRunner("MatMul", {*x, *dout}, {*dy}, {{"transpose_x1", true}, {"transpose_x2", false}}); runner_dy.Run(stream); } } } else if (x->dims().size() > 2) { if (transpose_y) { if (dx) { dx->mutable_data(ctx.GetPlace()); auto runner_dx = NpuOpRunner("BatchMatMul", {*dout, *y}, {*dx}, {{"adj_x1", false}, {"adj_x2", false}}); runner_dx.Run(stream); } if (dy) { dy->mutable_data(ctx.GetPlace()); auto runner_dy = NpuOpRunner("BatchMatMul", {*dout, *x}, {*dy}, {{"adj_x1", true}, {"adj_x2", false}}); runner_dy.Run(stream); } } else { if (dx) { dx->mutable_data(ctx.GetPlace()); auto runner_dx = NpuOpRunner("BatchMatMul", {*dout, *y}, {*dx}, {{"adj_x1", false}, {"adj_x2", true}}); runner_dx.Run(stream); } if (dy) { dy->mutable_data(ctx.GetPlace()); auto runner_dy = NpuOpRunner("BatchMatMul", {*x, *dout}, {*dy}, {{"adj_x1", true}, {"adj_x2", false}}); runner_dy.Run(stream); } } } } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP_NPU_KERNEL( matmul_v2, ops::MatMulV2NPUKernel, ops::MatMulV2NPUKernel); REGISTER_OP_NPU_KERNEL( matmul_v2_grad, ops::MatMulV2GradNPUKernel, ops::MatMulV2GradNPUKernel);