# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from functools import partial from typing import List import numpy as np from program_config import ProgramConfig, TensorConfig from trt_layer_auto_scan_test import TrtLayerAutoScanTest import paddle.inference as paddle_infer class TrtConvertOneHotTest(TrtLayerAutoScanTest): def is_program_valid(self, program_config: ProgramConfig) -> bool: ver = paddle_infer.get_trt_compile_version() if ver[0] * 1000 + ver[1] * 100 + ver[2] * 10 < 8510: return False return True def sample_program_configs(self): self.trt_param.workspace_size = 1073741824 def generate_indices(dims, batch): if dims == 2: return np.random.randint(0, 10, (batch, 4), dtype=np.int32) elif dims == 3: return np.random.randint(0, 10, (batch, 4, 6), dtype=np.int32) else: return np.random.randint( 0, 10, (batch, 4, 6, 8), dtype=np.int32 ) def generate_depth(dims, batch): return np.ones((1,), dtype=np.int32) * 10 for dims in [2, 3, 4]: for batch in [1, 2]: self.dims = dims dics = [{"dtype": 5, "depth": 10}, {}] ops_config = [ { "op_type": "one_hot_v2", "op_inputs": { "X": ["indices_tensor"], "depth_tensor": ["depth_tensor_data"], }, "op_outputs": {"Out": ["output_data"]}, "op_attrs": dics[0], "outputs_dtype": {"output_data": np.int_}, }, ] ops = self.generate_op_config(ops_config) program_config = ProgramConfig( ops=ops, weights={ "depth_tensor_data": TensorConfig( data_gen=partial(generate_depth, dims, batch) ), }, inputs={ "indices_tensor": TensorConfig( data_gen=partial(generate_indices, dims, batch) ), }, outputs=["output_data"], ) yield program_config def sample_predictor_configs( self, program_config ) -> (paddle_infer.Config, List[int], float): def generate_dynamic_shape(attrs): if self.dims == 1: self.dynamic_shape.min_input_shape = { "indices_tensor": [1], } self.dynamic_shape.max_input_shape = { "indices_tensor": [2], } self.dynamic_shape.opt_input_shape = { "indices_tensor": [1], } elif self.dims == 2: self.dynamic_shape.min_input_shape = { "indices_tensor": [1, 4], } self.dynamic_shape.max_input_shape = { "indices_tensor": [2, 4], } self.dynamic_shape.opt_input_shape = { "indices_tensor": [1, 4], } elif self.dims == 3: self.dynamic_shape.min_input_shape = { "indices_tensor": [1, 4, 6], } self.dynamic_shape.max_input_shape = { "indices_tensor": [2, 4, 6], } self.dynamic_shape.opt_input_shape = { "indices_tensor": [1, 4, 6], } elif self.dims == 4: self.dynamic_shape.min_input_shape = { "indices_tensor": [1, 4, 6, 8], } self.dynamic_shape.max_input_shape = { "indices_tensor": [2, 4, 6, 8], } self.dynamic_shape.opt_input_shape = { "indices_tensor": [1, 4, 6, 8], } def clear_dynamic_shape(): self.dynamic_shape.min_input_shape = {} self.dynamic_shape.max_input_shape = {} self.dynamic_shape.opt_input_shape = {} def generate_trt_nodes_num(attrs, dynamic_shape): if not dynamic_shape: return 0, 3 return 1, 2 attrs = [op.attrs for op in program_config.ops] # for static_shape clear_dynamic_shape() self.trt_param.precision = paddle_infer.PrecisionType.Float32 yield self.create_inference_config(), generate_trt_nodes_num( attrs, False ), 1e-5 self.trt_param.precision = paddle_infer.PrecisionType.Half yield self.create_inference_config(), generate_trt_nodes_num( attrs, False ), 1e-5 # for dynamic_shape generate_dynamic_shape(attrs) self.trt_param.precision = paddle_infer.PrecisionType.Float32 yield self.create_inference_config(), generate_trt_nodes_num( attrs, True ), 1e-5 self.trt_param.precision = paddle_infer.PrecisionType.Half yield self.create_inference_config(), generate_trt_nodes_num( attrs, True ), 1e-5 def test(self): self.run_test() if __name__ == "__main__": unittest.main()