// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/pybind/ir.h" #include #include #include #include #include #include #include #include "paddle/fluid/ir/dialect/pd_dialect.h" #include "paddle/fluid/ir/dialect/pd_type.h" #include "paddle/fluid/ir/interface/op_yaml_info.h" #include "paddle/fluid/ir_adaptor/translator/translate.h" #include "paddle/ir/core/block.h" #include "paddle/ir/core/builtin_attribute.h" #include "paddle/ir/core/program.h" #include "paddle/ir/core/type.h" #include "paddle/ir/core/value.h" #include "paddle/phi/core/enforce.h" #include "pybind11/stl.h" namespace py = pybind11; using ir::Block; using ir::Operation; using ir::OpOperand; using ir::OpResult; using ir::Program; using ir::Type; using ir::Value; using paddle::dialect::APIBuilder; using paddle::dialect::DenseTensorType; using pybind11::return_value_policy; namespace paddle { namespace pybind { PyTypeObject *g_ir_opresult_pytype = nullptr; void BindOpsAPI(pybind11::module *module); void BindProgram(py::module *m) { py::class_ program(*m, "Program"); program .def( "__init__", [](Program &self) { new (&self) Program(ir::IrContext::Instance()); }) .def("__str__", [](Program &self) { std::ostringstream print_stream; self.Print(print_stream); return print_stream.str(); }) .def("parameters_num", &Program::parameters_num) .def("block", py::overload_cast<>(&Program::block), return_value_policy::reference) .def("block", py::overload_cast<>(&Program::block, py::const_), return_value_policy::reference); } void BindBlock(py::module *m) { py::class_ block(*m, "Block"); block.def("front", &Block::front, return_value_policy::reference) .def("get_ops", [](Block &self) -> py::list { py::list op_list; for (auto iter = self.begin(); iter != self.end(); iter++) { op_list.append(*iter); } return op_list; }) .def("remove_op", [](Block &self, Operation *op) { auto op_iter = std::find(self.begin(), self.end(), op); self.erase(op_iter); }); } void BindOperation(py::module *m) { py::class_ op(*m, "Operation"); op.def("name", &Operation::name) .def("get_parent", &Operation::GetParent, return_value_policy::reference) .def("num_results", &Operation::num_results) .def("result", &Operation::result) .def("operands", [](Operation &self) -> py::list { py::list op_list; for (uint32_t i = 0; i < self.num_operands(); i++) { op_list.append(self.op_operand(i)); } return op_list; }) .def("results", [](Operation &self) -> py::list { py::list op_list; for (uint32_t i = 0; i < self.num_results(); i++) { op_list.append(self.result(i)); } return op_list; }) .def("get_input_names", [](Operation &self) -> py::list { py::list op_list; paddle::dialect::OpYamlInfoInterface yaml_interface = self.dyn_cast(); auto inputs_info = std::get<0>(yaml_interface.GetOpInfo()); for (auto &input_info : inputs_info) { op_list.append(input_info.name); } return op_list; }) .def("get_attr_names", [](Operation &self) -> py::list { py::list op_list; paddle::dialect::OpYamlInfoInterface yaml_interface = self.dyn_cast(); auto attrs_info = std::get<1>(yaml_interface.GetOpInfo()); for (auto &attr_info : attrs_info) { op_list.append(attr_info.name); } return op_list; }) .def("get_output_names", [](Operation &self) -> py::list { py::list op_list; paddle::dialect::OpYamlInfoInterface yaml_interface = self.dyn_cast(); auto outputs_info = std::get<2>(yaml_interface.GetOpInfo()); for (auto &output_info : outputs_info) { op_list.append(output_info.name); } return op_list; }) .def("replace_all_uses_with", [](Operation &self, const std::vector &op_results) { self.ReplaceAllUsesWith(op_results); }); } void BindValue(py::module *m) { py::class_ value(*m, "Value"); value.def( "get_defining_op", &Value::GetDefiningOp, return_value_policy::reference); } void BindOpOperand(py::module *m) { py::class_ op_operand(*m, "OpOperand"); op_operand .def("source", [](OpOperand &self) { return self.source().dyn_cast(); }) .def("set_source", [](OpOperand &self, const OpResult &result) { self.set_source(result); }); } void BindOpResult(py::module *m) { py::class_ op_result(*m, "OpResult"); g_ir_opresult_pytype = reinterpret_cast(op_result.ptr()); op_result .def("get_defining_op", &OpResult::GetDefiningOp, return_value_policy::reference) .def("use_empty", &OpResult::use_empty) .def("type", &OpResult::type) .def("set_stop_gradient", [](OpResult &self, bool stop_gradient) { auto *defining_op = self.owner(); std::vector stop_gradients; if (defining_op->HasAttribute(kAttrStopGradients)) { stop_gradients = defining_op->attribute(kAttrStopGradients) .dyn_cast() .AsVector(); } else { stop_gradients = std::vector( defining_op->num_results(), ir::BoolAttribute::get(ir::IrContext::Instance(), false)); } stop_gradients[self.GetResultIndex()] = ir::BoolAttribute::get( ir::IrContext::Instance(), stop_gradient); defining_op->set_attribute( kAttrStopGradients, ir::ArrayAttribute::get(ir::IrContext::Instance(), stop_gradients)); }) .def("get_stop_gradient", [](OpResult &self) { auto *defining_op = self.owner(); if (defining_op->HasAttribute(kAttrStopGradients)) { auto stop_gradients = defining_op->attribute(kAttrStopGradients) .dyn_cast() .AsVector(); return stop_gradients[self.GetResultIndex()] .dyn_cast() .data(); } else { return false; } }); } void BindType(py::module *m) { py::class_ ir_type(*m, "Type"); ir_type.def("__eq__", [](Type &self, Type &other) { return self == other; }) .def("__str__", [](Type &self) { std::ostringstream print_stream; print_stream << self; return print_stream.str(); }); } void BindUtils(pybind11::module *m) { m->def("get_op_result_shape", [](const OpResult &op_result) { if (op_result.type().isa()) { return phi::vectorize( op_result.type().dyn_cast().dims()); } else { PADDLE_THROW(phi::errors::InvalidArgument( "get_op_result_shape currently only support op_result that is a " "DenseTensorType")); } }); m->def("get_op_result_dtype", [](const OpResult &op_result) { if (op_result.type().isa()) { return op_result.type().dyn_cast().dtype(); } else { PADDLE_THROW(phi::errors::InvalidArgument( "get_op_result_dtype currently only support op_result that is a " "DenseTensorType")); } }); m->def("set_global_program", [](Program *program) { APIBuilder::Instance().SetProgram(program); }); m->def("set_insertion_point", [](Operation *op) { APIBuilder::Instance().SetInsertionPoint(op); }); m->def("reset_insertion_point_to_start", []() { APIBuilder::Instance().ResetInsertionPointToStart(); }); m->def("reset_insertion_point_to_end", []() { APIBuilder::Instance().ResetInsertionPointToEnd(); }); m->def("translate_to_new_ir", &paddle::TranslateLegacyProgramToProgram); } void BindNewIR(pybind11::module *module) { auto ir_module = module->def_submodule("ir"); BindProgram(&ir_module); BindBlock(&ir_module); BindOperation(&ir_module); BindValue(&ir_module); BindOpOperand(&ir_module); BindOpResult(&ir_module); BindType(&ir_module); BindUtils(&ir_module); auto ops_modules = ir_module.def_submodule("ops"); BindOpsAPI(&ops_modules); } } // namespace pybind } // namespace paddle