# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Steps to transpile trainer: 1. split variable to multiple blocks, aligned by product(dim[1:]) (width). 2. create delta variable in global scope which used to send 3. add send op to send sparse ids to communicator Steps to transpile pserver: 1. create new program for parameter server. 2. create params variables that assigned to current server instance. 3. create a sub-block in the server side program 4. append sum ops that should run on current server instance. 5. add listen_and_serv op """ import sys import collections import numpy as np from .ps_dispatcher import RoundRobin, PSDispatcher from .. import core, framework from ..framework import ( Program, default_main_program, default_startup_program, Block, Parameter, ) from .details import wait_server_ready, VarsDistributed from .details import delete_ops from .distribute_transpiler import ( DistributeTranspiler, DistributeTranspilerConfig, slice_variable, same_or_split_var, ServerRuntimeConfig, ) from paddle.fluid.incubate.fleet.parameter_server.mode import DistributedMode from paddle.distributed.distribute_lookup_table import ( find_distributed_lookup_table, ) RPC_OP_ROLE_ATTR_NAME = ( op_role_attr_name ) = core.op_proto_and_checker_maker.kOpRoleAttrName() RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC class GeoSgdTranspiler(DistributeTranspiler): def __init__(self, config=None): if config is not None: self.config = config else: self.config = DistributeTranspilerConfig() self._set_server_config() if self.config.split_method is None: self.config.split_method = RoundRobin assert self.config.min_block_size >= 8192 assert self.config.split_method.__bases__[0] == PSDispatcher def transpile( self, trainer_id, program=None, pservers="127.0.0.1:6174", trainers=1, sync_mode=False, startup_program=None, current_endpoint="127.0.0.1:6174", ): if program is None: program = default_main_program() if startup_program is None: startup_program = default_startup_program() self.origin_program = program self.startup_program = startup_program self.origin_startup_program = self.startup_program.clone() self.trainer_num = trainers # geo-sgd only supply async-mode self.sync_mode = False self.trainer_id = trainer_id pserver_endpoints = pservers.split(",") self.pserver_endpoints = pserver_endpoints self.vars_overview = VarsDistributed() self.optimize_ops, self.params_grads = self._get_optimize_pass() ps_dispatcher = self.config.split_method(self.pserver_endpoints) self.param_name_to_grad_name = dict() self.grad_name_to_param_name = dict() for param_var, grad_var in self.params_grads: self.param_name_to_grad_name[param_var.name] = grad_var.name self.grad_name_to_param_name[grad_var.name] = param_var.name # distribute lookup table self.table_name = find_distributed_lookup_table(self.origin_program) self.has_distributed_lookup_table = self.table_name is not None self.origin_program._distributed_lookup_table = ( self.table_name if self.table_name else None ) # add distributed attrs to program self.origin_program._is_distributed = True self.origin_program._endpoints = self.pserver_endpoints self.origin_program._ps_endpoint = current_endpoint self.origin_program._is_chief = self.trainer_id == 0 # program info send to geo-sgd communicator self.vars_info = collections.OrderedDict() self.split_to_origin_mapping = collections.OrderedDict() self.delta_vars_list = [] self.sparse_var_list = [] self.sparse_var_splited_list = [] # split and create vars, then put split vars in dicts for later use. # step 1. split and create vars, then put split vars in dicts for later use. self._init_splited_vars() # step 3. create send recv var (param after optimize) send_vars = [] ps_dispatcher.reset() param_var_mapping_items = list(self.param_var_mapping.items()) # send_vars is the parameter which split by communicator and send to pserver,not the origin parameter for _, splited_vars in param_var_mapping_items: for _, var in enumerate(splited_vars): send_vars.append(var) recv_vars = send_vars ps_dispatcher.reset() eplist = ps_dispatcher.dispatch(recv_vars) for i, ep in enumerate(eplist): self.param_opt_ep_mapping[ep]["params"].append(recv_vars[i]) distributed_var = self.vars_overview.get_distributed_var_by_slice( recv_vars[i].name ) distributed_var.endpoint = ep origin_name = self.split_to_origin_mapping[recv_vars[i].name] self.vars_info[origin_name]["epmap"].append(ep) self.origin_program._parameters_on_pservers = self.vars_overview # send sparse id to communicator self.sparse_var = [] self.sparse_tables = [] unique_sparse_var = {} for op in self.origin_program.global_block().ops: if "is_sparse" in op.all_attrs(): if op.type == "lookup_table": op._set_attr('remote_prefetch', False) for input_var_name, sparse_var_name in zip( op.input("Ids"), op.input("W") ): if sparse_var_name in self.sparse_var_list: if input_var_name in unique_sparse_var: if ( unique_sparse_var[input_var_name] == sparse_var_name ): continue input_var = program.global_block().var(input_var_name) self.sparse_var.append(input_var) self.sparse_tables.append(sparse_var_name) unique_sparse_var[input_var_name] = sparse_var_name # batch training loop end flag dummy_output = program.global_block().create_var( name=framework.generate_control_dev_var_name() ) program.global_block().append_op( type="send", inputs={"X": self.sparse_var}, outputs={"Out": dummy_output}, attrs={"send_varnames": self.sparse_tables}, ) # add param_init flag in trainer startup program self.trainer_startup_program = self._get_trainer_startup_program( recv_vars=recv_vars, eplist=eplist ) for delta_var in self.delta_vars_list: self.trainer_startup_program.global_block().create_var( name=delta_var.name, persistable=delta_var.persistable, dtype=delta_var.dtype, type=delta_var.type, shape=delta_var.shape, ) dummy_output = self.trainer_startup_program.global_block().create_var( name=framework.generate_control_dev_var_name() ) param_init = self.trainer_startup_program.global_block().create_var( name="param_init" ) self.trainer_startup_program.global_block().append_op( type="send", inputs={"X": [param_init]}, outputs={"Out": dummy_output}, attrs={"send_varnames": [param_init.name]}, ) def _get_vars_info(self): return self.vars_info def get_trainer_program(self, wait_port=True): if wait_port: wait_server_ready(self.pserver_endpoints) return self.origin_program def get_pserver_programs(self, endpoint): pserver_prog = self.get_pserver_program(endpoint) self.param_grad_ep_mapping = self.param_opt_ep_mapping pserver_startup = self.get_startup_program( endpoint, pserver_program=pserver_prog ) return pserver_prog, pserver_startup def get_pserver_program(self, endpoint): # step1 pserver_program = Program() pserver_program.random_seed = self.origin_program.random_seed pserver_program._copy_dist_param_info_from(self.origin_program) # step2: Create vars to receive vars at parameter servers. recv_inputs = [] for v in self.param_opt_ep_mapping[endpoint]["params"]: self._clone_var(pserver_program.global_block(), v) optimize_block = [] param_to_block_id = [] sparse_grad_to_param = [] # append op to the current block pre_block_idx = pserver_program.num_blocks - 1 for var in self.param_opt_ep_mapping[endpoint]["params"]: per_opt_block = pserver_program._create_block(pre_block_idx) optimize_block.append(per_opt_block) var_name = var.name pserver_block = per_opt_block.program.global_block() param = pserver_block.vars[var_name] delta_var_name = "%s.delta" % (param.name) if var.name in self.sparse_var_splited_list: delta_type = core.VarDesc.VarType.SELECTED_ROWS sparse_grad_to_param.append( ":".join([delta_var_name, param.name]) ) else: delta_type = param.type delta_var = pserver_block.create_var( name=delta_var_name, persistable=False, type=delta_type, dtype=param.dtype, shape=param.shape, ) per_opt_block.append_op( type="sum", inputs={"X": [param, delta_var]}, outputs={"Out": param}, ) param_to_block_id.append( delta_var_name + ":" + str(per_opt_block.idx) ) attrs = { "optimize_blocks": optimize_block, "endpoint": endpoint, "Fanin": self.trainer_num, "distributed_mode": DistributedMode.GEO, "grad_to_block_id": param_to_block_id, "sparse_grad_to_param": sparse_grad_to_param, "rpc_get_thread_num": self.server_config._rpc_get_thread_num, "rpc_send_thread_num": self.server_config._rpc_send_thread_num, "rpc_prefetch_thread_num": self.server_config._rpc_prefetch_thread_num, } # step5 append the listen_and_serv op pserver_program.global_block().append_op( type="listen_and_serv", inputs={'X': recv_inputs}, outputs={}, attrs=attrs, ) pserver_program._sync_with_cpp() # save pserver program to generate pserver side startup relatively. self.pserver_program = pserver_program return pserver_program def _init_splited_vars(self): param_list = [] grad_list = [] param_grad_set = set() # step 1. create param_list for p, g in self.params_grads: if type(p) == Parameter and p.trainable == False: continue if p.name not in param_grad_set: param_list.append(p) param_grad_set.add(p.name) if g.name not in param_grad_set: grad_list.append(g) param_grad_set.add(g.name) if g.type == core.VarDesc.VarType.SELECTED_ROWS: self.sparse_var_list.append(p.name) # step 2. Slice vars into numbers of piece with block_size # when we slice var up into blocks, we will slice the var according to # pserver services' count. A pserver may have two or more listening ports. param_blocks = slice_variable( param_list, len(self.pserver_endpoints), self.config.min_block_size ) # step 3. Create split param from split blocks # origin_param_name -> [splited_param_vars] # Todo: update _create_vars_from_blocklist self.param_var_mapping = self._create_vars_from_blocklist( self.origin_program, param_blocks ) # step 4. Create mapping of endpoint -> split var to create pserver side program self.param_opt_ep_mapping = collections.OrderedDict() [ self.param_opt_ep_mapping.update( { ep: { "params": [], } } ) for ep in self.pserver_endpoints ] # step 5. Create delta var of Geo-Sgd & record vars information for origin_name, splited_vars in self.param_var_mapping.items(): origin_var = self.origin_program.global_block().var(origin_name) self.vars_info[origin_name] = collections.OrderedDict() self.vars_info[origin_name]["var_names"] = [] vars_section = self._get_splited_var_sections(splited_vars) self.vars_info[origin_name]["sections"] = [ str(i) for i in vars_section ] self.vars_info[origin_name]["epmap"] = [] self.vars_info[origin_name]["is_sparse"] = [] # todo: add var shape(may be no need,because recv scope have) if origin_name in self.sparse_var_list: delta_type = core.VarDesc.VarType.SELECTED_ROWS self.vars_info[origin_name]["is_sparse"].append("True") else: delta_type = origin_var.type self.vars_info[origin_name]["is_sparse"].append("False") delta_var = self.origin_program.global_block().create_var( name=".".join([origin_name, "delta"]), persistable=False, dtype=origin_var.dtype, type=delta_type, shape=origin_var.shape, ) self.delta_vars_list.append(delta_var) for splited_var in splited_vars: is_slice, block_id, offset = self._get_slice_var_info( splited_var ) self.vars_overview.add_distributed_var( origin_var=origin_var, slice_var=splited_var, block_id=block_id, offset=offset, is_slice=is_slice, vtype="Param", ) self.split_to_origin_mapping[splited_var.name] = origin_name if origin_name in self.sparse_var_list: self.sparse_var_splited_list.append(splited_var.name) self.vars_info[origin_name]["var_names"].append( splited_var.name ) if len(splited_vars) != 1: self.origin_program.global_block().create_var( name=".".join([splited_var.name, "delta"]), persistable=False, dtype=splited_var.dtype, type=delta_type, shape=splited_var.shape, )