/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/tensor.h" #include "paddle/fluid/operators/amp/fp16_type_traits.h" #include "paddle/fluid/platform/device_context.h" #include "paddle/fluid/platform/hostdevice.h" #include "paddle/fluid/platform/macros.h" namespace paddle { namespace operators { namespace math { /* * \brief Extracting simple operations from pooling. * Both MaxPool and AvgPool need "initial", "compute" and "finalize" * operation. * MaxPool initializes temp variable to the negative maximum to find the * maximum value in the pooling field. * AvgPool initializes temp variable to the zero to accumulate all values * in pool pooling, and finally takes the average. * MaxPoolGrad and AvgPoolGrad are gradient operations respectively. */ template class MaxPool { public: DEVICE inline T initial() { return static_cast(-FLT_MAX); } DEVICE inline void compute(const T& x, T* y) { *y = *y > x ? *y : x; } DEVICE inline void finalize(const T& pool_field, T* y) {} }; template class AvgPool { using MT = typename details::MPTypeTrait::Type; MT intermediate_res; public: DEVICE inline T initial() { intermediate_res = static_cast(0.0f); return static_cast(0); } DEVICE inline void compute(const T& x, T* y) { intermediate_res += static_cast(x); } DEVICE inline void finalize(const T& pool_field, T* y) { *y = static_cast(intermediate_res / (static_cast(pool_field))); } }; template class MaxPoolGrad { public: static constexpr bool use_x = true; HOSTDEVICE inline void compute(const T& x, const T& y, const T& dy, T scale, T* dx) { *dx += dy * static_cast(x == y); } }; template class AvgPoolGrad { public: static constexpr bool use_x = false; HOSTDEVICE inline void compute(const T& x, const T& y, const T& dy, T scale, T* dx) { *dx += (scale * dy); } }; /* used for adaptive pool to calculate start and end index of each divided grid */ HOSTDEVICE inline int AdaptStartIndex(int ph, int input_size, int output_size) { return static_cast( floor(static_cast(ph * input_size) / output_size)); } HOSTDEVICE inline int AdaptEndIndex(int ph, int input_size, int output_size) { return static_cast( ceil(static_cast((ph + 1) * input_size) / output_size)); } /* * \brief Getting pooling results, and calculating gradient. * * In pool2d, all Tensors are in NCHW or NHWC format. Where N is batch size, C * is the number of channels, H and W is the height and width of feature. * In pool3d, all Tensors are in NCDHW or NDHWC format. Where N is batch size, C * is the number of channels, D, H and W is the depth, height and width of * feature. * * In max pooling, it is possible that the pooling region has multiple maximum * elements. In this case, we should compute the gradient of the first maximum * element. * This is different from average pooling. So we rewrite the max_pool_grad: * MaxPool2dGradFunctor, MaxPool3dGradFunctor. */ #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) template class Pool2dDirectCUDAFunctor { public: void operator()(const T* input, const std::vector& input_shape, const std::vector& output_shape, const std::vector& ksize, const std::vector& strides, const std::vector& paddings, bool exclusive, bool adaptive, T* output, gpuStream_t stream, PoolProcess pool_compute); }; #endif template class Pool2dFunctor { public: void operator()(const DeviceContext& context, const framework::Tensor& input, const std::vector& ksize, const std::vector& strides, const std::vector& paddings, bool exclusive, bool adaptive, framework::Tensor* output, PoolProcess pool_compute); // overload operator() to support argument data_format void operator()(const DeviceContext& context, const framework::Tensor& input, const std::vector& ksize, const std::vector& strides, const std::vector& paddings, const std::string data_format, bool exclusive, bool adaptive, framework::Tensor* output, PoolProcess pool_compute); }; template class Pool2dGradFunctor { public: void operator()(const DeviceContext& context, const framework::Tensor& input, const framework::Tensor& output, const framework::Tensor& output_grad, const std::vector& ksize, const std::vector& strides, const std::vector& paddings, bool exclusive, bool adaptive, framework::Tensor* input_grad, PoolProcess pool_compute); // overload operator() to support argument data_format void operator()(const DeviceContext& context, const framework::Tensor& input, const framework::Tensor& output, const framework::Tensor& output_grad, const std::vector& ksize, const std::vector& strides, const std::vector& paddings, const std::string data_format, bool exclusive, bool adaptive, framework::Tensor* input_grad, PoolProcess pool_compute); }; template class MaxPool2dGradFunctor { public: void operator()(const DeviceContext& context, const framework::Tensor& input, const framework::Tensor& output, const framework::Tensor& output_grad, const std::vector& ksize, const std::vector& strides, const std::vector& paddings, framework::Tensor* input_grad); // overload operator() to support argument data_format void operator()(const DeviceContext& context, const framework::Tensor& input, const framework::Tensor& output, const framework::Tensor& output_grad, const std::vector& ksize, const std::vector& strides, const std::vector& paddings, const std::string data_format, framework::Tensor* input_grad); }; #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) template class Pool3dDirectCUDAFunctor { public: void operator()(const T* input, const std::vector& input_shape, const std::vector& output_shape, const std::vector& ksize, const std::vector& strides, const std::vector& paddings, bool exclusive, bool adaptive, T* output, gpuStream_t stream, PoolProcess pool_compute); }; #endif template class Pool3dFunctor { public: void operator()(const DeviceContext& context, const framework::Tensor& input, const std::vector& ksize, const std::vector& strides, const std::vector& paddings, bool exclusive, bool adaptive, framework::Tensor* output, PoolProcess pool_compute); // overload operator() to support argument data_format void operator()(const DeviceContext& context, const framework::Tensor& input, const std::vector& ksize, const std::vector& strides, const std::vector& paddings, const std::string data_format, bool exclusive, bool adaptive, framework::Tensor* output, PoolProcess pool_compute); }; template class Pool3dGradFunctor { public: void operator()(const DeviceContext& context, const framework::Tensor& input, const framework::Tensor& output, const framework::Tensor& output_grad, const std::vector& ksize, const std::vector& strides, const std::vector& paddings, bool exclusive, bool adaptive, framework::Tensor* input_grad, PoolProcess pool_compute); // overload operator() to support argument data_format void operator()(const DeviceContext& context, const framework::Tensor& input, const framework::Tensor& output, const framework::Tensor& output_grad, const std::vector& ksize, const std::vector& strides, const std::vector& paddings, const std::string data_format, bool exclusive, bool adaptive, framework::Tensor* input_grad, PoolProcess pool_compute); }; template class MaxPool3dGradFunctor { public: void operator()(const DeviceContext& context, const framework::Tensor& input, const framework::Tensor& output, const framework::Tensor& output_grad, const std::vector& ksize, const std::vector& strides, const std::vector& paddings, framework::Tensor* input_grad); // overload operator() to support argument data_format void operator()(const DeviceContext& context, const framework::Tensor& input, const framework::Tensor& output, const framework::Tensor& output_grad, const std::vector& ksize, const std::vector& strides, const std::vector& paddings, const std::string data_format, framework::Tensor* input_grad); }; /* * \brief Getting max pooling results and corresponding max index, and * calculating gradient. * In up-sampling-pooling, it is necessary to know max element index. * In pool2d, all tensors are in NCHW format. In pool3d, all tensors are in * NCDHW format. */ template class MaxPool2dWithIndexFunctor { public: void operator()(const DeviceContext& context, const framework::Tensor& input, const std::vector& ksize, const std::vector& strides, const std::vector& paddings, bool adaptive, framework::Tensor* output, framework::Tensor* mask); }; template class MaxPool2dWithIndexGradFunctor { public: void operator()(const DeviceContext& context, const framework::Tensor& output_grad, const framework::Tensor& mask, const std::vector& ksize, const std::vector& strides, const std::vector& paddings, bool adaptive, framework::Tensor* input_grad); }; template class MaxPool3dWithIndexFunctor { public: void operator()(const DeviceContext& context, const framework::Tensor& input, const std::vector& ksize, const std::vector& strides, const std::vector& paddings, bool adaptive, framework::Tensor* output, framework::Tensor* mask); }; template class MaxPool3dWithIndexGradFunctor { public: void operator()(const DeviceContext& context, const framework::Tensor& output_grad, const framework::Tensor& mask, const std::vector& ksize, const std::vector& strides, const std::vector& paddings, bool adaptive, framework::Tensor* input_grad); }; } // namespace math } // namespace operators } // namespace paddle