/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/fluid/operators/fused/cudnn_fusion_helper.h" #include "paddle/fluid/platform/cudnn_desc.h" #include "paddle/fluid/platform/cudnn_helper.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; namespace dynload = platform::dynload; template using BatchNormParamType = typename platform::CudnnDataType::BatchNormParamType; #if CUDNN_VERSION >= 8000 template struct BNStatsFinalizeArgs { BNStatsFinalizeArgs() { dtype = platform::CudnnDataType::type; param_dtype = platform::CudnnDataType>::type; format = CUDNN_TENSOR_NHWC; } void Set(const std::vector ¶m_shape) { PADDLE_ENFORCE_EQ( param_shape.size(), 4U, platform::errors::InvalidArgument( "The size of param_shape is expected to 4. But recieved " "param_shape's size is %d, param_shape is [%s].", param_shape.size(), framework::make_ddim(param_shape))); in_desc.set(param_shape, format, param_dtype); out_desc.set(param_shape, format, dtype); } cudnnDataType_t dtype; cudnnDataType_t param_dtype; cudnnTensorFormat_t format; platform::TensorDescriptor in_desc; platform::TensorDescriptor out_desc; }; template class CudnnBNStatsFinalize { public: CudnnBNStatsFinalize(const platform::CUDADeviceContext &ctx, const std::vector ¶m_shape) : train_op_(CUDNN_FUSED_BN_FINALIZE_STATISTICS_TRAINING), inference_op_(CUDNN_FUSED_BN_FINALIZE_STATISTICS_INFERENCE) { args_.Set(param_shape); } ~CudnnBNStatsFinalize() {} void Forward(const platform::CUDADeviceContext &ctx, const Tensor &sum, const Tensor &sum_of_squares, const Tensor &scale, const Tensor &bias, Tensor *saved_mean, Tensor *saved_invstd, Tensor *running_mean, Tensor *running_var, Tensor *equiv_scale, Tensor *equiv_bias, double eps, float momentum, int64_t ele_count, bool is_train) { auto place = ctx.GetPlace(); if (is_train) { TrainInit(ctx); } else { InferenceInit(ctx); } auto &op = is_train ? train_op_ : inference_op_; // Set variant_param for both inference_op_ and train_op_ float *sum_ptr = const_cast(sum.data()); float *sum_of_squares_ptr = const_cast(sum_of_squares.data()); float *scale_ptr = const_cast(scale.data()); float *bias_ptr = const_cast(bias.data()); float *saved_mean_ptr = saved_mean->mutable_data(place); float *saved_invstd_ptr = saved_invstd->mutable_data(place); float *running_mean_ptr = running_mean->mutable_data(place); float *running_var_ptr = running_var->mutable_data(place); T *equiv_scale_ptr = equiv_scale->mutable_data(place); T *equiv_bias_ptr = equiv_bias->mutable_data(place); op.SetOpVariantParamAttrPtr(CUDNN_PTR_BN_SCALE, scale_ptr); op.SetOpVariantParamAttrPtr(CUDNN_PTR_BN_BIAS, bias_ptr); op.SetOpVariantParamAttrPtr(CUDNN_PTR_BN_RUNNING_MEAN, running_mean_ptr); op.SetOpVariantParamAttrPtr(CUDNN_PTR_BN_RUNNING_VAR, running_var_ptr); op.SetOpVariantParamAttrPtr(CUDNN_PTR_BN_EQSCALE, equiv_scale_ptr); op.SetOpVariantParamAttrPtr(CUDNN_PTR_BN_EQBIAS, equiv_bias_ptr); op.SetOpVariantParamAttrPtr(CUDNN_SCALAR_DOUBLE_BN_EPSILON, &eps); // Set extra variant_param only for train_op_: if (is_train) { op.SetOpVariantParamAttrPtr(CUDNN_PTR_YSUM, sum_ptr); op.SetOpVariantParamAttrPtr(CUDNN_PTR_YSQSUM, sum_of_squares_ptr); op.SetOpVariantParamAttrPtr(CUDNN_PTR_BN_SAVED_MEAN, saved_mean_ptr); op.SetOpVariantParamAttrPtr(CUDNN_PTR_BN_SAVED_INVSTD, saved_invstd_ptr); double avg_factor = 1.0 - momentum; op.SetOpVariantParamAttrPtr(CUDNN_SCALAR_INT64_T_BN_ACCUMULATION_COUNT, &ele_count); op.SetOpVariantParamAttrPtr(CUDNN_SCALAR_DOUBLE_BN_EXP_AVG_FACTOR, &avg_factor); } // fused op execute auto handle = ctx.cudnn_handle(); op.Execute(handle); } private: void TrainInit(const platform::CUDADeviceContext &ctx) { // Set constant_param for train op train_op_.SetOpConstParamAttr( {CUDNN_PARAM_YSUM_PLACEHOLDER, CUDNN_PARAM_YSQSUM_PLACEHOLDER, CUDNN_PARAM_BN_SCALE_PLACEHOLDER, CUDNN_PARAM_BN_BIAS_PLACEHOLDER, CUDNN_PARAM_BN_SAVED_MEAN_PLACEHOLDER, CUDNN_PARAM_BN_SAVED_INVSTD_PLACEHOLDER, CUDNN_PARAM_BN_RUNNING_MEAN_PLACEHOLDER, CUDNN_PARAM_BN_RUNNING_VAR_PLACEHOLDER, CUDNN_PARAM_BN_EQSCALE_PLACEHOLDER, CUDNN_PARAM_BN_EQBIAS_PLACEHOLDER}, CUDNN_PTR_16B_ALIGNED); // Set input and output desc for train op train_op_.SetOpConstParamDesc( {CUDNN_PARAM_YSTATS_DESC, CUDNN_PARAM_BN_SCALEBIAS_MEANVAR_DESC}, args_.in_desc.desc()); train_op_.SetOpConstParamDesc(CUDNN_PARAM_BN_EQSCALEBIAS_DESC, args_.out_desc.desc()); // Get workspace auto handle = ctx.cudnn_handle(); train_op_.SetOpConstParamAttr(CUDNN_PARAM_BN_MODE, CUDNN_BATCHNORM_SPATIAL_PERSISTENT); // Check workspace size, also creates plan. size_t workspace_size_bytes = train_op_.GetWorkspaceSizeInBytes(handle); PADDLE_ENFORCE_EQ(workspace_size_bytes, 0U, platform::errors::InvalidArgument( "Unexpected non-zero workspace size for " "CudnnBNStatsFinalize.")); train_op_.SetOpVariantParamAttrPtr(CUDNN_PTR_WORKSPACE, static_cast(nullptr)); train_op_.SetOpVariantParamAttrPtr(CUDNN_PTR_WORKSPACE, &workspace_size_bytes); } void InferenceInit(const platform::CUDADeviceContext &ctx) { // Set constant_param for inference op inference_op_.SetOpConstParamAttr( {CUDNN_PARAM_BN_SCALE_PLACEHOLDER, CUDNN_PARAM_BN_BIAS_PLACEHOLDER, CUDNN_PARAM_BN_RUNNING_MEAN_PLACEHOLDER, CUDNN_PARAM_BN_RUNNING_VAR_PLACEHOLDER, CUDNN_PARAM_BN_EQSCALE_PLACEHOLDER, CUDNN_PARAM_BN_EQBIAS_PLACEHOLDER}, CUDNN_PTR_16B_ALIGNED); // Set input and output desc for inference op inference_op_.SetOpConstParamDesc(CUDNN_PARAM_BN_SCALEBIAS_MEANVAR_DESC, args_.in_desc.desc()); inference_op_.SetOpConstParamDesc(CUDNN_PARAM_BN_EQSCALEBIAS_DESC, args_.out_desc.desc()); // Get workspace auto handle = ctx.cudnn_handle(); inference_op_.SetOpConstParamAttr(CUDNN_PARAM_BN_MODE, CUDNN_BATCHNORM_SPATIAL_PERSISTENT); // Check workspace size, also creates plan. size_t workspace_size_bytes = inference_op_.GetWorkspaceSizeInBytes(handle); PADDLE_ENFORCE_EQ(workspace_size_bytes, 0U, platform::errors::InvalidArgument( "Unexpected non-zero workspace size for " "CudnnBNStatsFinalize.")); inference_op_.SetOpVariantParamAttrPtr(CUDNN_PTR_WORKSPACE, static_cast(nullptr)); inference_op_.SetOpVariantParamAttrPtr(CUDNN_PTR_WORKSPACE, &workspace_size_bytes); } BNStatsFinalizeArgs args_; CudnnFusionOp train_op_; CudnnFusionOp inference_op_; }; #endif } // namespace operators } // namespace paddle