# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle.fluid as fluid from paddle.fluid import Program, program_guard import paddle.fluid.core as core from op_test import OpTest def maxout_forward_naive(input, groups, channel_axis): s0, s1, s2, s3 = input.shape if channel_axis == 3: return np.ndarray([s0, s1, s2, s3 // groups, groups], \ buffer = input, dtype=input.dtype).max(axis=(4)) return np.ndarray([s0, s1 // groups, groups, s2, s3], \ buffer = input, dtype=input.dtype).max(axis=(2)) class TestMaxOutOp(OpTest): def setUp(self): self.op_type = "maxout" self.init_test_case() input = np.random.random(self.shape) output = self.MaxOut_forward_naive(input, self.groups, self.axis) self.inputs = {'X': input} self.attrs = {'groups': self.groups, 'axis': self.axis} self.outputs = {'Out': output} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') def init_test_case(self): self.MaxOut_forward_naive = maxout_forward_naive self.shape = [100, 6, 2, 2] self.groups = 2 self.axis = 1 class TestMaxOutOpAxis(TestMaxOutOp): def init_test_case(self): self.MaxOut_forward_naive = maxout_forward_naive self.shape = [100, 2, 2, 6] # NHWC format self.groups = 2 self.axis = 3 class TestMaxOutOpAxisAPI(unittest.TestCase): def test_axis(self): data1 = fluid.data(name='data1', shape=[3, 6, 2, 2], dtype='float32') data2 = fluid.data(name='data2', shape=[3, 2, 2, 6], dtype='float32') out1 = fluid.layers.maxout(data1, groups=2, axis=1) out2 = fluid.layers.maxout(data2, groups=2, axis=-1) data1_np = np.random.random((3, 6, 2, 2)).astype("float32") data2_np = np.transpose(data1_np, [0, 2, 3, 1]) if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) else: place = core.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) results = exe.run(fluid.default_main_program(), feed={"data1": data1_np, "data2": data2_np}, fetch_list=[out1, out2], return_numpy=True) self.assertTrue( np.allclose(results[0], np.transpose(results[1], (0, 3, 1, 2)))) def test_exception(self): input = fluid.data(name="input", shape=[2, 4, 6, 6], dtype="float32") def _attr_axis(): out = fluid.layers.maxout(input, groups=2, axis=2) self.assertRaises(ValueError, _attr_axis) class TestMaxOutOpError(unittest.TestCase): def test_errors(self): with program_guard(Program()): # The input type must be Variable. self.assertRaises(TypeError, fluid.layers.maxout, 1, 2) # The input dtype must be float16, float32, float64. x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32') self.assertRaises(TypeError, fluid.layers.maxout, x_int32, 2) # support the input dtype is float32 x_fp32 = fluid.data(name='x_fp32', shape=[12, 10], dtype='float32') fluid.layers.maxout(x_fp32, 2) if __name__ == '__main__': unittest.main()