# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest from operator import __add__, __sub__, __mul__, __truediv__ import numpy as np import paddle from paddle.fluid.framework import _test_eager_guard op_list = [__add__, __sub__, __mul__, __truediv__] def get_actual_res(x, y, op): if op == __add__: res = paddle.incubate.sparse.add(x, y) elif op == __sub__: res = paddle.incubate.sparse.subtract(x, y) elif op == __mul__: res = paddle.incubate.sparse.multiply(x, y) elif op == __truediv__: res = paddle.incubate.sparse.divide(x, y) else: raise ValueError("unsupported op") return res class TestSparseElementWiseAPI(unittest.TestCase): """ test paddle.sparse.add, subtract, multiply, divide """ def setUp(self): paddle.fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True}) np.random.seed(2022) self.op_list = op_list self.csr_shape = [128, 256] self.coo_shape = [4, 8, 3, 5] self.support_dtypes = ['float32', 'float64', 'int32', 'int64'] def func_test_csr(self, op): for dtype in self.support_dtypes: x = np.random.randint(-255, 255, size=self.csr_shape).astype(dtype) y = np.random.randint(-255, 255, size=self.csr_shape).astype(dtype) dense_x = paddle.to_tensor(x, dtype=dtype, stop_gradient=False) dense_y = paddle.to_tensor(y, dtype=dtype, stop_gradient=False) s_dense_x = paddle.to_tensor(x, dtype=dtype, stop_gradient=False) s_dense_y = paddle.to_tensor(y, dtype=dtype, stop_gradient=False) csr_x = s_dense_x.to_sparse_csr() csr_y = s_dense_y.to_sparse_csr() actual_res = get_actual_res(csr_x, csr_y, op) actual_res.backward(actual_res) expect_res = op(dense_x, dense_y) expect_res.backward(expect_res) self.assertTrue( np.allclose(expect_res.numpy(), actual_res.to_dense().numpy(), equal_nan=True)) if not (op == __truediv__ and dtype in ['int32', 'int64']): self.assertTrue( np.allclose(dense_x.grad.numpy(), csr_x.grad.to_dense().numpy(), equal_nan=True)) self.assertTrue( np.allclose(dense_y.grad.numpy(), csr_y.grad.to_dense().numpy(), equal_nan=True)) def func_test_coo(self, op): for sparse_dim in range(len(self.coo_shape) - 1, len(self.coo_shape)): for dtype in self.support_dtypes: x = np.random.randint(-255, 255, size=self.coo_shape).astype(dtype) y = np.random.randint(-255, 255, size=self.coo_shape).astype(dtype) dense_x = paddle.to_tensor(x, dtype=dtype, stop_gradient=False) dense_y = paddle.to_tensor(y, dtype=dtype, stop_gradient=False) s_dense_x = paddle.to_tensor(x, dtype=dtype, stop_gradient=False) s_dense_y = paddle.to_tensor(y, dtype=dtype, stop_gradient=False) coo_x = s_dense_x.to_sparse_coo(sparse_dim) coo_y = s_dense_y.to_sparse_coo(sparse_dim) actual_res = get_actual_res(coo_x, coo_y, op) actual_res.backward(actual_res) expect_res = op(dense_x, dense_y) expect_res.backward(expect_res) self.assertTrue( np.allclose(expect_res.numpy(), actual_res.to_dense().numpy(), equal_nan=True)) self.assertTrue( np.allclose(dense_x.grad.numpy(), coo_x.grad.to_dense().numpy(), equal_nan=True)) self.assertTrue( np.allclose(dense_y.grad.numpy(), coo_y.grad.to_dense().numpy(), equal_nan=True)) def test_support_dtypes_csr(self): paddle.device.set_device('cpu') if paddle.device.get_device() == "cpu": for op in op_list: self.func_test_csr(op) def test_support_dtypes_coo(self): paddle.device.set_device('cpu') if paddle.device.get_device() == "cpu": for op in op_list: self.func_test_coo(op) if __name__ == "__main__": paddle.device.set_device('cpu') unittest.main()