/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include "paddle/phi/kernels/funcs/elementwise_base.h" #if defined(__NVCC__) || defined(__HIPCC__) || defined(__xpu__) #include "paddle/phi/kernels/funcs/dims_simplifier.h" namespace kps = phi::kps; #endif namespace phi { namespace funcs { #if defined(__NVCC__) || defined(__HIPCC__) || defined(__xpu__) enum BroadcastLoadType { kMixed = 1, kBroadcast = 2, kElementwise = 3 }; template struct LoaderTypeClassifier { public: int64_t numel{0}; int vec_size{1}; int broadcast_num{0}; bool all_elementwise{true}; phi::Array use_broadcast; phi::Array ins_data; LoaderTypeClassifier() {} LoaderTypeClassifier(const std::vector &ins, std::vector *outs) { int out_vec_size = std::min(4, phi::GetVectorizedSize((*outs)[0]->data())); for (auto i = 1; i < outs->size(); ++i) { PADDLE_ENFORCE_EQ( (*outs)[i]->dims(), (*outs)[0]->dims(), phi::errors::InvalidArgument( "The shape of each output tensor shall be identical yet, but " "%d-th output tensor`s shape is not.", i)); out_vec_size = std::min( phi::GetVectorizedSize((*outs)[i]->data()), out_vec_size); } numel = (*outs)[0]->numel(); for (int i = 0; i < Arity; ++i) { auto in_data = ins[i]->data(); ins_data[i] = (const _ptr_ InT *)(in_data); bool is_same_dim = ins[i]->numel() == numel; if (is_same_dim) { use_broadcast[i] = false; auto temp_size = phi::GetVectorizedSize(in_data); in_vec_size = std::min(temp_size, in_vec_size); } else { use_broadcast[i] = true; broadcast_num++; } all_elementwise &= is_same_dim; } vec_size = std::min(out_vec_size, in_vec_size); } private: int in_vec_size{4}; }; #ifndef PADDLE_WITH_XPU_KP // Common broadcast/elementwise Loader. template struct BroadcastDataLoader { __device__ __forceinline__ void operator()( T args[Arity][VecSize], const phi::Array &ins, const phi::Array &configs, const phi::Array &use_broadcast, const int block_offset, const int num, const uint32_t numel) { #pragma unroll for (int i = 0; i < Arity; ++i) { kps::Init(args[i], static_cast(1.0f)); if (use_broadcast[i]) { kps::ReadDataBc( args[i], ins[i], block_offset, configs[i], numel, VecSize); } else { kps::ReadData( args[i], ins[i] + block_offset, num, VecSize); } } } }; // Scalar elementwise Loader with consideration of IsBoundary. template struct BroadcastDataLoader { __device__ __forceinline__ void operator()( T args[Arity][VecSize], const phi::Array &ins, const phi::Array &configs, const phi::Array &use_broadcast, const int block_offset, const int num, const uint32_t numel) { int thread_offset = threadIdx.x * VecSize + block_offset; #pragma unroll for (int i = 0; i < Arity; ++i) { #pragma unroll for (int idx = 0; idx < VecSize; ++idx) { args[i][idx] = static_cast(1); int index = thread_offset + idx; if (index < numel) { args[i][idx] = ins[i][index]; } } } } }; // Vectorized elementwise Loader without consideration of IsBoundary. template struct BroadcastDataLoader { __device__ __forceinline__ void operator()( T args[Arity][VecSize], const phi::Array &ins, const phi::Array &configs, const phi::Array &use_broadcast, const int block_offset, const int num, const uint32_t numel) { using VecType = phi::kps::details::VectorType; VecType vec_temp[Arity]; int thread_offset = threadIdx.x + blockIdx.x * blockDim.x; #pragma unroll for (int i = 0; i < Arity; ++i) { const VecType *__restrict__ vec_input = reinterpret_cast(ins[i]); vec_temp[i] = vec_input[thread_offset]; #pragma unroll for (int idx = 0; idx < VecSize; ++idx) { args[i][idx] = vec_temp[i].val[idx]; } } } }; // Common broadcast data loader. template struct BroadcastDataLoader { __device__ __forceinline__ void operator()( T args[Arity][VecSize], const phi::Array &ins, const phi::Array &configs, const phi::Array &use_broadcast, const int block_offset, const int num, const uint32_t numel) { uint32_t index_bc[Arity][VecSize]; #pragma unroll for (int j = 0; j < Arity; ++j) { #pragma unroll for (int k = 0; k < VecSize; ++k) { index_bc[j][k] = 0; args[j][k] = static_cast(1); } } uint32_t thread_offset = block_offset + threadIdx.x * VecSize; #pragma unroll for (int k = 0; k < VecSize; ++k) { uint32_t idx = thread_offset + k; if (IsBoundary) { if (idx == numel) break; } #pragma unroll for (int i = 0; i < phi::DDim::kMaxRank; ++i) { if (i == configs[0].rank) break; auto fast_divmoder = configs[0].divmoders[i].Divmod(idx); idx = fast_divmoder.val[0]; #pragma unroll for (int j = 0; j < Arity; ++j) { index_bc[j][k] += fast_divmoder.val[1] * configs[j].strides[i]; } } } #pragma unroll for (int j = 0; j < Arity; ++j) { #pragma unroll for (int k = 0; k < VecSize; ++k) { args[j][k] = ins[j][index_bc[j][k]]; } } } }; #endif template __device__ void VectorizedBroadcastKernelImpl( const phi::Array &ins, phi::Array<_ptr_ OutT *, NumOuts> outs, const phi::Array &use_broadcast, const uint32_t numel, const phi::Array &configs, int num, int block_offset, int read_lens, Functor func) { __simd__ InT args[Arity][VecSize]; __simd__ ConditionalT result[VecSize]; #ifdef PADDLE_WITH_XPU_KP #pragma unroll for (int i = 0; i < Arity; ++i) { kps::Init(args[i], static_cast(1.0f), read_lens); if (use_broadcast[i]) { kps::ReadDataBc( args[i], ins[i], block_offset, configs[i], numel, read_lens); } else { kps::ReadData( args[i], ins[i] + block_offset, num, read_lens); } } #else BroadcastDataLoader()( args, ins, configs, use_broadcast, block_offset, num, numel); #endif constexpr bool kCallElementwiseAny = phi::funcs::FunctionTraits::has_pointer_args; phi::funcs::ElementwisePrimitiveCaller, VecSize, Functor, Arity, kCallElementwiseAny>()( func, args, result, read_lens); phi::funcs:: ElementwiseWriteDataCallerBc()( outs, result, block_offset, num, read_lens); } template __global__ void VectorizedBroadcastKernel( phi::Array ins, phi::Array<_ptr_ OutT *, NumOuts> outs, phi::Array use_broadcast, uint32_t numel, phi::Array configs, int main_offset, int tail_tid, int read_lens, Functor func) { #ifdef PADDLE_WITH_XPU_KP int block_offset = BLOCK_ID_X * BLOCK_NUM_X * read_lens; int stride = BLOCK_NUM_X * GRID_NUM_X * read_lens; for (; block_offset < main_offset; block_offset += stride) { VectorizedBroadcastKernelImpl(ins, outs, use_broadcast, numel, configs, BLOCK_NUM_X * read_lens, block_offset, read_lens, func); } int num = numel - block_offset; if (num > 0) { VectorizedBroadcastKernelImpl(ins, outs, use_broadcast, numel, configs, num, block_offset, read_lens, func); } #else int block_offset = BLOCK_ID_X * BLOCK_NUM_X * VecSize; if (block_offset < main_offset) { VectorizedBroadcastKernelImpl(ins, outs, use_broadcast, numel, configs, BLOCK_NUM_X * VecSize, block_offset, read_lens, func); } else { VectorizedBroadcastKernelImpl(ins, outs, use_broadcast, numel, configs, tail_tid, block_offset, read_lens, func); } #endif } template void LaunchBroadcastKernel( const KPDevice &ctx, const std::vector &ins, std::vector *outs, Func func, const phi::Array &configs, const LoaderTypeClassifier &loader_classifier) { phi::Array<_ptr_ OutT *, NumOuts> outs_data; for (int i = 0; i < NumOuts; ++i) { outs_data[i] = (_ptr_ OutT *)(ctx.Alloc((*outs)[i])); } #ifdef PADDLE_WITH_XPU_KP int numel = (*outs)[0]->numel(); const int threads = 64; const int blocks = 8; int read_lens = configs[0].buf_len; auto stream = ctx.x_context()->xpu_stream; int main_offset = (numel / (read_lens * threads)) * read_lens * threads; int tail_tid = numel % (read_lens * threads); VectorizedBroadcastKernel <<>>(loader_classifier.ins_data, outs_data, loader_classifier.use_broadcast, numel, configs, main_offset, tail_tid, read_lens, func); #else const auto &numel = loader_classifier.numel; auto gpu_config = phi::backends::gpu::GetGpuLaunchConfig1D(ctx, numel, VecSize); auto stream = ctx.stream(); auto threads = gpu_config.GetBlockSize(); auto blocks = gpu_config.block_per_grid; int main_offset = (numel / (VecSize * threads)) * VecSize * threads; int tail_tid = numel % (VecSize * threads); if (loader_classifier.all_elementwise) { VectorizedBroadcastKernel <<>>(loader_classifier.ins_data, outs_data, loader_classifier.use_broadcast, numel, configs, main_offset, tail_tid, VecSize, func); } else if (loader_classifier.broadcast_num > (Arity >> 1)) { constexpr BroadcastLoadType type_ = (Arity > 1) ? kBroadcast : kMixed; VectorizedBroadcastKernel <<>>(loader_classifier.ins_data, outs_data, loader_classifier.use_broadcast, numel, configs, main_offset, tail_tid, VecSize, func); } else { VectorizedBroadcastKernel <<>>(loader_classifier.ins_data, outs_data, loader_classifier.use_broadcast, numel, configs, main_offset, tail_tid, VecSize, func); } #endif } #ifndef PADDLE_WITH_XPU_KP HOSTDEVICE static int64_t ConvertSrcIdxToDstIdx( int64_t src_idx, const phi::Array &src_strides, const phi::Array &dst_strides, int rank) { int64_t dst_idx = 0; int64_t old_src_idx = src_idx; for (int k = 0; k < rank; ++k) { auto local_idx = src_idx / src_strides[k + 1]; src_idx -= local_idx * src_strides[k + 1]; if (dst_strides[k] != dst_strides[k + 1]) { dst_idx += local_idx * dst_strides[k + 1]; } } return dst_idx; } template HOSTDEVICE static void ReadVecDataWithInt64Index( const T *in, int64_t idx, bool need_broadcast, const phi::Array &src_strides, const phi::Array &dst_strides, int rank, int n, phi::AlignedVector *out) { if (IsBoundary) { for (int i = 0; i < n; ++i) { (*out)[i] = in[ConvertSrcIdxToDstIdx(idx + i, src_strides, dst_strides, rank)]; } } else { if (!need_broadcast) { phi::Load(in + idx, out); } else { #pragma unroll for (int i = 0; i < VecSize; ++i) { (*out)[i] = in[ConvertSrcIdxToDstIdx(idx + i, src_strides, dst_strides, rank)]; } } } } template struct ApplyFunctorWithInt64IndexHelper { HOSTDEVICE static OutT Run(const phi::AlignedVector *ins_vec, Functor functor, int i); }; template struct ApplyFunctorWithInt64IndexHelper { HOSTDEVICE static OutT Run(const phi::AlignedVector *ins_vec, Functor functor, int i) { return static_cast(functor()); } }; template struct ApplyFunctorWithInt64IndexHelper { HOSTDEVICE static OutT Run(const phi::AlignedVector *ins_vec, Functor functor, int i) { return static_cast(functor(ins_vec[0][i])); } }; template struct ApplyFunctorWithInt64IndexHelper { HOSTDEVICE static OutT Run(const phi::AlignedVector *ins_vec, Functor functor, int i) { return static_cast(functor(ins_vec[0][i], ins_vec[1][i])); } }; template struct ApplyFunctorWithInt64IndexHelper { HOSTDEVICE static OutT Run(const phi::AlignedVector *ins_vec, Functor functor, int i) { return static_cast( functor(ins_vec[0][i], ins_vec[1][i], ins_vec[2][i])); } }; template struct MaxWithOne { static constexpr auto kValue = (N >= 1 ? N : 1); }; template __global__ void BroadcastKernelWithInt64Index( phi::Array::kValue> ins, OutT *out, phi::Array, MaxWithOne::kValue> ins_strides, phi::Array out_strides, phi::Array::kValue> need_broadcasts, int rank, Functor functor) { int64_t numel = out_strides[0]; int64_t idx = (static_cast(blockIdx.x) * blockDim.x + threadIdx.x) * VecSize; int64_t stride = static_cast(blockDim.x) * gridDim.x * VecSize; int64_t limit = numel - VecSize; phi::Array, MaxWithOne::kValue> ins_vec; phi::AlignedVector out_vec; for (; idx <= limit; idx += stride) { #pragma unroll for (int i = 0; i < NumIns; ++i) { ReadVecDataWithInt64Index(ins[i], idx, need_broadcasts[i], out_strides, ins_strides[i], rank, VecSize, &ins_vec[i]); } #pragma unroll for (int i = 0; i < VecSize; ++i) { out_vec[i] = ApplyFunctorWithInt64IndexHelper::Run(ins_vec.Get(), functor, i); } phi::Store(out_vec, out + idx); } if (idx < numel) { int remain = numel - idx; // remain is always less than VecSize, therefore // `int` is enough here #pragma unroll for (int i = 0; i < NumIns; ++i) { ReadVecDataWithInt64Index(ins[i], idx, need_broadcasts[i], out_strides, ins_strides[i], rank, remain, &ins_vec[i]); } for (int i = 0; i < remain; ++i) { out[idx + i] = ApplyFunctorWithInt64IndexHelper::Run(ins_vec.Get(), functor, i); } } } template struct LaunchBroadcastKernelWithInt64IndexHelper { static void Run(const KPDevice &ctx, const std::vector &ins, std::vector *outs, int axis, Functor functor) { PADDLE_THROW(phi::errors::PermissionDenied( "Unreachable code branch. This may be a bug.")); } }; template struct LaunchBroadcastKernelWithInt64IndexHelper { static void Run(const KPDevice &ctx, const std::vector &ins, std::vector *outs, int axis, Functor functor) { phi::Array::kValue> ins_ptrs; for (int i = 0; i < Arity; ++i) { ins_ptrs[i] = ins[i]->data(); } auto *out_tensor = (*outs)[0]; auto *out_ptr = ctx.Alloc(out_tensor); phi::Array, MaxWithOne::kValue> ins_expand_dims; phi::Array broadcast_out_dims; int rank; if (Arity == 1) { rank = ins[0]->dims().size(); for (int i = 0; i < rank; ++i) { broadcast_out_dims[i] = ins[0]->dims()[i]; } ins_expand_dims[0] = broadcast_out_dims; } else if (Arity >= 2) { CalculateBroadcastDims(ins[0]->dims().Get(), ins[1]->dims().Get(), ins[0]->dims().size(), ins[1]->dims().size(), axis, ins_expand_dims[0].GetMutable(), ins_expand_dims[1].GetMutable(), broadcast_out_dims.GetMutable(), &rank); for (int i = 2; i < Arity; ++i) { auto tmp_dims = broadcast_out_dims; phi::Array tmp_expand_dims; int tmp_rank; PADDLE_ENFORCE_GE(rank, ins[i]->dims().size(), phi::errors::InvalidArgument( "Unsupported reverse broadcast when the input " "tensor number is larger than 2.")); CalculateBroadcastDims(tmp_dims.Get(), ins[i]->dims().Get(), rank, ins[i]->dims().size(), axis, tmp_expand_dims.GetMutable(), ins_expand_dims[i].GetMutable(), broadcast_out_dims.GetMutable(), &tmp_rank); PADDLE_ENFORCE_EQ(rank, tmp_rank, phi::errors::InvalidArgument( "Wrong broadcast algorithm. This may be a bug.")); } } phi::Array, MaxWithOne::kValue> ins_strides; phi::Array::kValue> need_broadcasts; phi::Array out_strides; const auto &out_dims = out_tensor->dims(); if (rank <= out_dims.size()) { out_strides = ShapeToStride(out_dims.Get(), rank); } else { out_strides = ShapeToStride(broadcast_out_dims.Get(), rank); } for (int i = 0; i < Arity; ++i) { ins_strides[i] = ShapeToStride(ins_expand_dims[i].Get(), rank); need_broadcasts[i] = !IsSameShape(out_strides.Get(), ins_strides[i].Get(), rank + 1); } int64_t numel = out_strides[0]; auto gpu_config = phi::backends::gpu::GetGpuLaunchConfig1D(ctx, numel, VecSize); BroadcastKernelWithInt64Index <<>>(ins_ptrs, out_ptr, ins_strides, out_strides, need_broadcasts, rank, functor); } private: static void CalculateBroadcastDims(const int64_t *x_dims, const int64_t *y_dims, int nx, int ny, int axis, int64_t *x_out_dims, int64_t *y_out_dims, int64_t *broadcast_out_dims, int *length) { PADDLE_ENFORCE_GE( axis, 0, phi::errors::InvalidArgument("Invalid axis value: %d", axis)); if (nx == ny) { *length = nx; for (int i = 0; i < nx; ++i) { if (x_dims[i] != y_dims[i]) { PADDLE_ENFORCE_EQ( x_dims[i] == 1 || y_dims[i] == 1, true, phi::errors::InvalidArgument("Cannot broadcast input shape where " "x_dims[%d] = %d, y_dims[%d] = %d.", i, x_dims[i], i, y_dims[i])); } broadcast_out_dims[i] = std::max(x_dims[i], y_dims[i]); x_out_dims[i] = x_dims[i]; y_out_dims[i] = y_dims[i]; } } else if (nx > ny) { *length = nx; for (int i = nx - axis; i < ny; ++i) { PADDLE_ENFORCE_EQ( y_dims[i], 1, phi::errors::InvalidArgument( "The trailing Y.shape[%d] should be 1 but got %d.", i, y_dims[i])); } for (int i = 0; i < nx; ++i) { if (i >= axis && i - axis < ny) { if (x_dims[i] != y_dims[i - axis]) { PADDLE_ENFORCE_EQ(x_dims[i] == 1 || y_dims[i - axis] == 1, true, phi::errors::InvalidArgument( "Cannot broadcast input shape where " "x_dims[%d] = %d, y_dims[%d] = %d.", i, x_dims[i], i - axis, y_dims[i - axis])); } broadcast_out_dims[i] = std::max(x_dims[i], y_dims[i - axis]); x_out_dims[i] = x_dims[i]; y_out_dims[i] = y_dims[i - axis]; } else { broadcast_out_dims[i] = x_dims[i]; x_out_dims[i] = x_dims[i]; y_out_dims[i] = 1; } } } else { CalculateBroadcastDims(y_dims, x_dims, ny, nx, axis, y_out_dims, x_out_dims, broadcast_out_dims, length); } } static bool IsSameShape(const int64_t *x, const int64_t *y, int rank) { for (int i = 0; i < rank; ++i) { if (x[i] != y[i]) return false; } return true; } static phi::Array ShapeToStride( const int64_t *arr, int rank) { phi::Array strides; strides[rank] = 1; for (int i = rank - 1; i >= 0; --i) { strides[i] = strides[i + 1] * arr[i]; } return strides; } }; #endif template void BroadcastKernelForDifferentVecSize( const KPDevice &ctx, const std::vector &ins, std::vector *outs, int axis, Functor func) { using Traits = phi::funcs::FunctionTraits; const int kArity = Traits::has_pointer_args ? static_cast(ET) : Traits::arity; PADDLE_ENFORCE_EQ( ins.size(), kArity, phi::errors::InvalidArgument("The number of inputs is expected to be " "equal to the " "arity of functor. But recieved: the " "number of inputs " "is %d, the arity of functor is %d.", ins.size(), kArity)); PADDLE_ENFORCE_LE( kArity, 3, phi::errors::InvalidArgument("Currently only broadcast of ternary is " "supported " "and verified, but received %d.", kArity)); PADDLE_ENFORCE_EQ( outs->size(), NumOuts, phi::errors::InvalidArgument("Number of outputs shall equal to number " "of functions, " "but number of outputs is %d, of " "functions is %d.", outs->size(), NumOuts)); #ifndef PADDLE_WITH_XPU_KP constexpr bool kEnabledInt64IndexKernel = (NumOuts == 1 && kArity <= 3); bool use_int64_index_kernel = kEnabledInt64IndexKernel && (*outs)[0]->numel() >= std::numeric_limits::max(); if (use_int64_index_kernel) { auto loader_classifier = LoaderTypeClassifier(ins, outs); switch (loader_classifier.vec_size) { case VecSizeL: { LaunchBroadcastKernelWithInt64IndexHelper::Run(ctx, ins, outs, axis, func); break; } case VecSizeM: { LaunchBroadcastKernelWithInt64IndexHelper::Run(ctx, ins, outs, axis, func); break; } case VecSizeS: { LaunchBroadcastKernelWithInt64IndexHelper::Run(ctx, ins, outs, axis, func); break; } default: { PADDLE_THROW(phi::errors::Unimplemented( "Unsupported vectorized size: %d!", loader_classifier.vec_size)); break; } } return; } #endif phi::Array configs; #ifdef PADDLE_WITH_XPU_KP PADDLE_ENFORCE_EQ( ins.size(), 2, phi::errors::InvalidArgument( "XPU only support inputs is 2, but received %d", ins.size())); auto loader_classifier = LoaderTypeClassifier(); const auto dims_simplifier = BroadcastDimsSimplifier(ins, (*outs)[0]->dims(), axis); if (VLOG_IS_ON(6)) { DimsSimplifiedLogger::Log( ins, outs, dims_simplifier, "XPU Broadcast"); } configs[0] = kps::details::BroadcastConfig(dims_simplifier.out_dims, dims_simplifier.in_dims[0], dims_simplifier.in_dims[1], dims_simplifier.rank); configs[1] = kps::details::BroadcastConfig(dims_simplifier.out_dims, dims_simplifier.in_dims[1], dims_simplifier.in_dims[0], dims_simplifier.rank); auto type = kps::details::OptType::CanNotOptimize; bool is_optimize = configs[0].cmp_type != type; int vec_size = is_optimize ? VecSizeL : VecSizeM; #else auto loader_classifier = LoaderTypeClassifier(ins, outs); if (!loader_classifier.all_elementwise) { const auto dims_simplifier = BroadcastDimsSimplifier(ins, (*outs)[0]->dims(), axis); if (VLOG_IS_ON(6)) { DimsSimplifiedLogger::Log( ins, outs, dims_simplifier, "GPU Broadcast"); } for (int i = 0; i < kArity; ++i) { // if data shape is[m, n], then you should set data_dim = {n, m} // eg: out's shape [3, 45, 1]. then out_dims = {1, 45, 3} // if (ins[i]->numel() != (*outs)[0]->numel()) { if (ins[i]->numel()) { configs[i] = kps::details::BroadcastConfig(dims_simplifier.out_dims, dims_simplifier.in_dims[i], dims_simplifier.rank); } } } #endif switch (loader_classifier.vec_size) { case VecSizeL: { LaunchBroadcastKernel( ctx, ins, outs, func, configs, loader_classifier); break; } case VecSizeM: { LaunchBroadcastKernel( ctx, ins, outs, func, configs, loader_classifier); break; } case VecSizeS: { LaunchBroadcastKernel( ctx, ins, outs, func, configs, loader_classifier); break; } default: { PADDLE_THROW(phi::errors::Unimplemented( "Unsupported vectorized size: %d!", loader_classifier.vec_size)); break; } } } template void BroadcastKernel(const KPDevice &ctx, const std::vector &ins, std::vector *outs, int axis, Functor func) { // When there are multiple inputs, the outputs's rank should be equal the // maximum rank of all inputs. int max_rank = 0; int min_rank = phi::DDim::kMaxRank; for (auto *in : ins) { max_rank = std::max(max_rank, in->dims().size()); min_rank = std::min(min_rank, in->dims().size()); } if (ins.size() == 1) { // When there is only 1 input, the input's rank may be less than outputs' // rank. max_rank = std::max(max_rank, (*outs)[0]->dims().size()); } axis = axis == -1 ? max_rank - min_rank : axis; BroadcastKernelForDifferentVecSize( ctx, ins, outs, axis, func); } template void ElementwiseCompute(const GPUContext &dev_ctx, const DenseTensor &x, const DenseTensor &y, int axis, Functor func, DenseTensor *z) { std::vector ins = {&x, &y}; std::vector outs = {z}; dev_ctx.template Alloc(z); BroadcastKernel( dev_ctx, ins, &outs, axis, func); } template void DefaultElementwiseOperator(const DeviceContext &dev_ctx, const DenseTensor &x, const DenseTensor &y, DenseTensor *z, int axis = -1) { auto x_dims = x.dims(); auto y_dims = y.dims(); dev_ctx.template Alloc(z); funcs::ElementwiseCompute(dev_ctx, x, y, axis, Functor(), z); } #else template void DefaultElementwiseOperator(const DeviceContext &dev_ctx, const DenseTensor &x, const DenseTensor &y, DenseTensor *z, int axis = -1) { auto x_dims = x.dims(); auto y_dims = y.dims(); dev_ctx.template Alloc(z); if (x_dims.size() >= y_dims.size()) { funcs::ElementwiseCompute(dev_ctx, x, y, axis, Functor(), z); } else { funcs::ElementwiseCompute( dev_ctx, x, y, axis, InverseFunctor(), z); } } #endif } // namespace funcs } // namespace phi