# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from functools import partial from typing import List import numpy as np from program_config import ProgramConfig, TensorConfig from trt_layer_auto_scan_test import TrtLayerAutoScanTest import paddle.inference as paddle_infer class TrtConvertRangeDynamicTest(TrtLayerAutoScanTest): def is_program_valid(self, program_config: ProgramConfig) -> bool: return True def sample_program_configs(self): def generate_input(): return np.array([1]).astype(np.int32) for in_dtype in [2]: self.in_dtype = in_dtype dics = [{}] ops_config = [ { "op_type": "fill_constant", "op_inputs": {}, "op_outputs": {"Out": ["start_data"]}, "op_attrs": { "dtype": self.in_dtype, "str_value": "7", "shape": [1], }, }, { "op_type": "fill_constant", "op_inputs": {}, "op_outputs": {"Out": ["end_data"]}, "op_attrs": { "dtype": self.in_dtype, "str_value": "256", "shape": [1], }, }, { "op_type": "fill_constant", "op_inputs": {}, "op_outputs": {"Out": ["step_data"]}, "op_attrs": { "dtype": self.in_dtype, "str_value": "1", "shape": [1], }, }, { "op_type": "range", "op_inputs": { "Start": ["start_data"], "End": ["end_data"], "Step": ["step_data"], }, "op_outputs": {"Out": ["range_output_data1"]}, "op_attrs": dics[0], }, { "op_type": "cast", "op_inputs": {"X": ["range_output_data1"]}, "op_outputs": {"Out": ["range_output_data"]}, "op_attrs": {"in_dtype": self.in_dtype, "out_dtype": 5}, }, ] ops = self.generate_op_config(ops_config) program_config = ProgramConfig( ops=ops, weights={}, inputs={ "step_data": TensorConfig(data_gen=partial(generate_input)), }, outputs=["range_output_data"], ) yield program_config def sample_predictor_configs( self, program_config ) -> (paddle_infer.Config, List[int], float): def generate_dynamic_shape(attrs): self.dynamic_shape.min_input_shape = { "start_data": [1], "end_data": [1], "step_data": [1], } self.dynamic_shape.max_input_shape = { "start_data": [1], "end_data": [1], "step_data": [1], } self.dynamic_shape.opt_input_shape = { "start_data": [1], "end_data": [1], "step_data": [1], } def clear_dynamic_shape(): self.dynamic_shape.min_input_shape = {} self.dynamic_shape.max_input_shape = {} self.dynamic_shape.opt_input_shape = {} def generate_trt_nodes_num(attrs, dynamic_shape): return 1, 2 attrs = [ program_config.ops[i].attrs for i in range(len(program_config.ops)) ] # for dynamic_shape generate_dynamic_shape(attrs) self.trt_param.precision = paddle_infer.PrecisionType.Float32 yield self.create_inference_config(), generate_trt_nodes_num( attrs, True ), 1e-5 self.trt_param.precision = paddle_infer.PrecisionType.Half yield self.create_inference_config(), generate_trt_nodes_num( attrs, True ), 1e-2 def test(self): self.run_test() class TrtConvertRangeStaticTest(TrtLayerAutoScanTest): def is_program_valid(self, program_config: ProgramConfig) -> bool: return True def sample_program_configs(self): def generate_input(): return np.array([0]).astype(np.int32) def generate_input1(): return np.array([128]).astype(np.int32) def generate_input2(): return np.array([1]).astype(np.int32) for in_dtype in [2]: self.in_dtype = in_dtype dics = [{}] ops_config = [ { "op_type": "range", "op_inputs": { "Start": ["start_data"], "End": ["end_data"], "Step": ["step_data"], }, "op_outputs": {"Out": ["range_output_data1"]}, "op_attrs": dics[0], }, { "op_type": "cast", "op_inputs": {"X": ["range_output_data1"]}, "op_outputs": {"Out": ["range_output_data"]}, "op_attrs": {"in_dtype": self.in_dtype, "out_dtype": 5}, }, ] ops = self.generate_op_config(ops_config) program_config = ProgramConfig( ops=ops, weights={}, inputs={ "start_data": TensorConfig( data_gen=partial(generate_input) ), "end_data": TensorConfig(data_gen=partial(generate_input1)), "step_data": TensorConfig( data_gen=partial(generate_input2) ), }, outputs=["range_output_data"], ) yield program_config def sample_predictor_configs( self, program_config ) -> (paddle_infer.Config, List[int], float): def clear_dynamic_shape(): self.dynamic_shape.min_input_shape = {} self.dynamic_shape.max_input_shape = {} self.dynamic_shape.opt_input_shape = {} def generate_trt_nodes_num(attrs, dynamic_shape): return 0, 6 attrs = [ program_config.ops[i].attrs for i in range(len(program_config.ops)) ] # for static_shape clear_dynamic_shape() self.trt_param.precision = paddle_infer.PrecisionType.Float32 yield self.create_inference_config(), generate_trt_nodes_num( attrs, False ), 1e-5 self.trt_param.precision = paddle_infer.PrecisionType.Half yield self.create_inference_config(), generate_trt_nodes_num( attrs, False ), 1e-2 def test(self): self.run_test() if __name__ == "__main__": unittest.main()