/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #ifndef HL_SSE_MATRIX_KERNEL_CUH_ #define HL_SSE_MATRIX_KERNEL_CUH_ #include "hl_matrix_type.cuh" #define VECTOR_SIZE 16 #ifndef PADDLE_TYPE_DOUBLE /* number of float in vector */ #define VECTOR_LEN 4 #define VECTOR_SET _mm_set_ps1 #else #if defined(__APPLE__) || defined(__OSX__) #define _mm_set_pd1 _mm_set1_pd #endif /* number of double in vector */ #define VECTOR_LEN 2 #define VECTOR_SET _mm_set_pd1 #endif inline bool hl_check_align(size_t size) { return !(size & (VECTOR_SIZE - 1)); } inline bool hl_check_align(void *ptr) { return hl_check_align(reinterpret_cast(ptr)); } #ifndef PADDLE_TYPE_DOUBLE template inline real hl_agg_op(Agg agg, vecType mm) { __m128 lo = _mm_unpacklo_ps(mm, mm); __m128 hi = _mm_unpackhi_ps(mm, mm); __m128 tmp1 = agg.vecOp(lo, hi); __m128 tmp2 = _mm_movehl_ps(tmp1, tmp1); __m128 ret = agg.vecOp(tmp1, tmp2); return _mm_cvtss_f32(ret); } #else template inline real hl_agg_op(Agg agg, vecType mm) { __m128d lo = _mm_unpacklo_pd(mm, mm); __m128d hi = _mm_unpackhi_pd(mm, mm); __m128d ret = agg.vecOp(lo, hi); return _mm_cvtsd_f64(ret); } #endif template void hl_sse_matrix_row_op(Agg agg, Op op, Saver sv, int dimM, int dimN, real *dst, int ld, real *A, int lda) { for (int i = 0; i < dimM; i++, A += lda) { vecType mm = VECTOR_SET(agg.init()); vecType *a = (vecType*)(A); for (int j = 0; j < dimN / VECTOR_LEN; j++, a++) { mm = agg.vecOp(mm, op.vecOp(*a)); } int rem = dimN % VECTOR_LEN; if (rem) { real tmp = hl_agg_op(agg, mm); real *a = A + (dimN / VECTOR_LEN) * VECTOR_LEN; for (int j = 0; j < rem; j++) { tmp = agg(tmp, op(a[j])); } dst[i*ld] = sv(dst[i*ld], tmp); } else { dst[i*ld] = sv(dst[i*ld], hl_agg_op(agg, mm)); } } } template void hl_sse_matrix_row_op(Agg agg, Op op, Saver sv, int dimM, int dimN, real *dst, int ld, real *A, int lda, real *B, int ldb) { for (int i = 0; i < dimM; i++, A += lda, B += ldb) { vecType mm = VECTOR_SET(agg.init()); vecType *a = (vecType*)(A); vecType *b = (vecType*)(B); for (int j = 0; j < dimN / VECTOR_LEN; j++, a++, b++) { mm = agg.vecOp(mm, op.vecOp(*a, *b)); } int rem = dimN % VECTOR_LEN; if (rem) { real tmp = hl_agg_op(agg, mm); real *a = A + (dimN / VECTOR_LEN) * VECTOR_LEN; real *b = B + (dimN / VECTOR_LEN) * VECTOR_LEN; for (int j = 0; j < rem; j++) { tmp = agg(tmp, op(a[j], b[j])); } dst[i*ld] = sv(dst[i*ld], tmp); } else { dst[i*ld] = sv(dst[i*ld], hl_agg_op(agg, mm)); } } } template void hl_matrix_column_op(Agg agg, Op op, Saver sv, int dimM, int dimN, real *dst, real *A, int lda) { for (int j = 0; j < dimN; j++) { real tmp = agg.init(); for (int i = 0; i < dimM; i++) { tmp = agg(tmp, op(A[i * lda + j])); } dst[j] = sv(dst[j], tmp); } } template void hl_matrix_column_op(Agg agg, Op op, Saver sv, int dimM, int dimN, real *dst, real *A, int lda, real *B, int ldb) { for (int j = 0; j < dimN; j++) { real tmp = agg.init(); for (int i = 0; i < dimM; i++) { tmp = agg(tmp, op(A[i * lda + j], B[i * ldb + j])); } dst[j] = sv(dst[j], tmp); } } /* * MaxRow greater than or equal dimN * dimN is multiples of VECTOR_LEN * so rem <= MaxRow / VECTOR_LEN */ template void hl_sse_column_op_with_rem(Agg agg, Op op, Saver sv, int dimM, int dimN, real *dst, real *A, int lda) { vecType mm[MaxRow / VECTOR_LEN]; for (int n = 0; n < MaxRow / VECTOR_LEN; n++) { mm[n] = VECTOR_SET(agg.init()); } for (int i = 0; i < dimM; i++) { vecType *a = (vecType*)(A + i * lda); for (int n = 0; n < dimN / VECTOR_LEN; n++) { mm[n] = agg.vecOp(mm[n], op.vecOp(a[n])); } } vecType *result = (vecType*)(dst); for (int n = 0; n < dimN / VECTOR_LEN; n++) { result[n] = sv.vecOp(result[n], mm[n]); } int rem = dimN % VECTOR_LEN; if (rem) { A += (dimN / VECTOR_LEN) * VECTOR_LEN; dst += (dimN / VECTOR_LEN) * VECTOR_LEN; hl_matrix_column_op(agg, op, sv, dimM, rem, dst, A, lda); } } /* * dimN is multiples of VECTOR_LEN * dimN greater than Step */ template void hl_sse_matrix_column_op(Agg agg, Op op, Saver sv, int dimM, int dimN, real *dst, real *A, int lda) { for (int j = 0; j < dimN / Step; j++, dst += Step, A += Step) { vecType mm[Step / VECTOR_LEN]; for (int n = 0; n < Step / VECTOR_LEN; n++) { mm[n] = VECTOR_SET(agg.init()); } for (int i = 0; i < dimM; i++) { vecType *a = (vecType*)(A + i * lda); for (int n = 0; n < Step / VECTOR_LEN; n++) { mm[n] = agg.vecOp(mm[n], op.vecOp(a[n])); } } vecType *result = (vecType*)(dst); for (int n = 0; n < Step / VECTOR_LEN; n++) { result[n] = sv.vecOp(result[n], mm[n]); } } int remRow = dimN % Step; if (remRow) { hl_sse_column_op_with_rem(agg, op, sv, dimM, remRow, dst, A, lda); } } template void hl_sse_matrix_column_op(Agg agg, Op op, Saver sv, int dimM, int dimN, real *dst, real *A, int lda) { if (dimN <= 16) { hl_sse_matrix_column_op<16>(agg, op, sv, dimM, dimN, dst, A, lda); } else if (dimN <= 32) { hl_sse_matrix_column_op<32>(agg, op, sv, dimM, dimN, dst, A, lda); } else if (dimN <= 1024 || dimM <= 512) { hl_sse_matrix_column_op<64>(agg, op, sv, dimM, dimN, dst, A, lda); } else { hl_sse_matrix_column_op<1024>(agg, op, sv, dimM, dimN, dst, A, lda); } } template void hl_sse_column_op_with_rem(Agg agg, Op op, Saver sv, int dimM, int dimN, real *dst, real *A, int lda, real *B, int ldb) { vecType mm[MaxRow / VECTOR_LEN]; for (int n = 0; n < MaxRow / VECTOR_LEN; n++) { mm[n] = VECTOR_SET(agg.init()); } for (int i = 0; i < dimM; i++) { vecType *a = (vecType*)(A + i * lda); vecType *b = (vecType*)(B + i * ldb); for (int n = 0; n < dimN / VECTOR_LEN; n++) { mm[n] = agg.vecOp(mm[n], op.vecOp(a[n], b[n])); } } vecType *result = (vecType*)(dst); for (int n = 0; n < dimN / VECTOR_LEN; n++) { result[n] = sv.vecOp(result[n], mm[n]); } int rem = dimN % VECTOR_LEN; if (rem) { A += (dimN / VECTOR_LEN) * VECTOR_LEN; B += (dimN / VECTOR_LEN) * VECTOR_LEN; dst += (dimN / VECTOR_LEN) * VECTOR_LEN; hl_matrix_column_op(agg, op, sv, dimM, rem, dst, A, lda, B, ldb); } } template void hl_sse_matrix_column_op(Agg agg, Op op, Saver sv, int dimM, int dimN, real *dst, real *A, int lda, real *B, int ldb) { for (int j = 0; j < dimN / Step; j++, dst += Step, A += Step, B += Step) { vecType mm[Step / VECTOR_LEN]; for (int n = 0; n < Step / VECTOR_LEN; n++) { mm[n] = VECTOR_SET(agg.init()); } for (int i = 0; i < dimM; i++) { vecType *a = (vecType*)(A + i * lda); vecType *b = (vecType*)(B + i * ldb); for (int n = 0; n < Step / VECTOR_LEN; n++) { mm[n] = agg.vecOp(mm[n], op.vecOp(a[n], b[n])); } } vecType *result = (vecType*)(dst); for (int n = 0; n < Step / VECTOR_LEN; n++) { result[n] = sv.vecOp(result[n], mm[n]); } } int remRow = dimN % Step; if (remRow) { hl_sse_column_op_with_rem( agg, op, sv, dimM, remRow, dst, A, lda, B, ldb); } } template void hl_sse_matrix_column_op(Agg agg, Op op, Saver sv, int dimM, int dimN, real *dst, real *A, int lda, real *B, int ldb) { if (dimN <= 16) { hl_sse_matrix_column_op<16>(agg, op, sv, dimM, dimN, dst, A, lda, B, ldb); } else if (dimN <= 32) { hl_sse_matrix_column_op<32>(agg, op, sv, dimM, dimN, dst, A, lda, B, ldb); } else if (dimN <= 1024 || dimM <= 512) { hl_sse_matrix_column_op<64>(agg, op, sv, dimM, dimN, dst, A, lda, B, ldb); } else { hl_sse_matrix_column_op<1024>(agg, op, sv, dimM, dimN, dst, A, lda, B, ldb); } } #endif /* HL_SSE_MATRIX_KERNEL_CUH_ */