# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from functools import partial from typing import Any, Dict, List import numpy as np from program_config import ProgramConfig, TensorConfig from trt_layer_auto_scan_test import TrtLayerAutoScanTest import paddle.inference as paddle_infer class TrtConvertYoloBoxHeadTest(TrtLayerAutoScanTest): def sample_program_configs(self): def generate_input(attrs: List[Dict[str, Any]], batch, shape): gen_shape = shape.copy() gen_shape.insert(0, batch) return np.random.uniform(0, 1, gen_shape).astype("float32") input_shape = [[255, 19, 19], [255, 38, 38], [255, 76, 76]] anchors = [ [116, 90, 156, 198, 373, 326], [30, 61, 62, 45, 59, 119], [10, 13, 16, 30, 33, 23], ] class_num = 80 for batch in [1, 4]: for i in range(len(anchors)): attrs_dict = { "anchors": anchors[i], "class_num": class_num, } ops_config = [ { "op_type": "yolo_box_head", "op_inputs": { "X": ["yolo_box_head_input"], }, "op_outputs": { "Out": ["yolo_box_head_output"], }, "op_attrs": attrs_dict, } ] ops = self.generate_op_config(ops_config) program_config = ProgramConfig( ops=ops, weights={}, inputs={ "yolo_box_head_input": TensorConfig( data_gen=partial( generate_input, attrs_dict, batch, input_shape[i], ) ) }, outputs=["yolo_box_head_output"], ) yield program_config def sample_predictor_configs( self, program_config ) -> (paddle_infer.Config, List[int], float): # for static_shape self.trt_param.precision = paddle_infer.PrecisionType.Float32 program_config.set_input_type(np.float32) yield self.create_inference_config(), [1, 2], 1e-5 def test(self): self.run_test() if __name__ == "__main__": unittest.main()