# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random import unittest from functools import partial from typing import Any, Dict, List import numpy as np from program_config import ProgramConfig, TensorConfig from trt_layer_auto_scan_test import TrtLayerAutoScanTest import paddle.inference as paddle_infer class TrtConvertRollTest(TrtLayerAutoScanTest): def is_program_valid(self, program_config: ProgramConfig) -> bool: inputs = program_config.inputs weights = program_config.weights attrs = [ program_config.ops[i].attrs for i in range(len(program_config.ops)) ] return True def sample_program_configs(self): self.trt_param.workspace_size = random.randint(1024, 1 << 30) def generate_input1(attrs: List[Dict[str, Any]]): return np.random.random([1, 56, 56, 192]).astype(np.float32) for axis in [[1, 2]]: for shifts in [[-1, -1], [-3, -3]]: dics = [ { "axis": axis, "shifts": shifts, } ] ops_config = [ { "op_type": "roll", "op_inputs": {"X": ["input_data"]}, "op_outputs": {"Out": ["roll_output_data"]}, "op_attrs": dics[0], } ] ops = self.generate_op_config(ops_config) program_config = ProgramConfig( ops=ops, weights={}, inputs={ "input_data": TensorConfig( data_gen=partial(generate_input1, dics) ) }, outputs=["roll_output_data"], ) yield program_config def sample_predictor_configs( self, program_config ) -> (paddle_infer.Config, List[int], float): def generate_dynamic_shape(attrs): self.dynamic_shape.min_input_shape = { "input_data": [1, 56, 56, 192] } self.dynamic_shape.max_input_shape = { "input_data": [8, 56, 56, 192] } self.dynamic_shape.opt_input_shape = { "input_data": [4, 56, 56, 192] } def clear_dynamic_shape(): self.dynamic_shape.min_input_shape = {} self.dynamic_shape.max_input_shape = {} self.dynamic_shape.opt_input_shape = {} def generate_trt_nodes_num(attrs, dynamic_shape): inputs = program_config.inputs if not dynamic_shape: return 0, 3 ver = paddle_infer.get_trt_compile_version() if ver[0] * 1000 + ver[1] * 100 + ver[2] * 10 < 7000: return 0, 3 return 1, 2 attrs = [ program_config.ops[i].attrs for i in range(len(program_config.ops)) ] # for static_shape clear_dynamic_shape() self.trt_param.precision = paddle_infer.PrecisionType.Float32 program_config.set_input_type(np.float32) yield self.create_inference_config(), generate_trt_nodes_num( attrs, False ), 1e-5 self.trt_param.precision = paddle_infer.PrecisionType.Half program_config.set_input_type(np.float16) yield self.create_inference_config(), generate_trt_nodes_num( attrs, False ), 1e-3 # for dynamic_shape generate_dynamic_shape(attrs) self.trt_param.precision = paddle_infer.PrecisionType.Float32 program_config.set_input_type(np.float32) yield self.create_inference_config(), generate_trt_nodes_num( attrs, True ), 1e-5 self.trt_param.precision = paddle_infer.PrecisionType.Half program_config.set_input_type(np.float16) yield self.create_inference_config(), generate_trt_nodes_num( attrs, True ), 1e-3 def test(self): self.run_test() if __name__ == "__main__": unittest.main()