# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from functools import partial from typing import Any, Dict, List import numpy as np from program_config import ProgramConfig, TensorConfig from trt_layer_auto_scan_test import TrtLayerAutoScanTest import paddle.inference as paddle_infer class TrtConvertReduceTest(TrtLayerAutoScanTest): def is_program_valid(self, program_config: ProgramConfig) -> bool: inputs = program_config.inputs attrs = [ program_config.ops[i].attrs for i in range(len(program_config.ops)) ] # dim should be in (-rank, rank), and not NONE rank = len(inputs['input_data'].shape) for x in attrs[0]["dim"]: if x >= rank or x <= -rank: return False if len(attrs[0]["dim"]) == 0: return False ver = paddle_infer.get_trt_compile_version() if ver[0] * 1000 + ver[1] * 100 + ver[0] * 10 < 7000: if attrs[0]['out_dtype'] == 2: return False return True def sample_program_configs(self): def generate_input1(dtype, attrs: List[Dict[str, Any]]): if dtype == -1 or dtype == 5: return np.random.random([1, 3, 64, 64]).astype(np.float32) elif dtype == 2: return np.random.random([1, 3, 64, 64]).astype(np.int32) elif dtype == 0: return np.random.random([1, 3, 64, 64]).astype(np.bool_) elif dtype == 3: return np.random.random([1, 3, 64, 64]).astype(np.int64) elif dtype == 6: return np.random.random([1, 3, 64, 64]).astype(np.float64) for keep_dim in [True, False]: for dim in [ [], [1], [0], [0, 1], [1, 2, 3], [-2, 0, 3], [-3], [-4, 1], [3, 4, 5], ]: for reduce_all in [True, False]: for out_dtype in [-1, 0, 2, 5, 3, 6]: if out_dtype != 0: reduce_type_list = [ "reduce_max", "reduce_min", "reduce_mean", "reduce_sum", "reduce_prod", ] else: reduce_type_list = [ "reduce_all", "reduce_any", ] for op_type in reduce_type_list: dics = [ { "keep_dim": keep_dim, "dim": dim, "reduce_all": reduce_all, "out_dtype": out_dtype, "in_dtype": out_dtype, }, {}, ] ops_config = [ { "op_type": op_type, "op_inputs": {"X": ["input_data"]}, "op_outputs": { "Out": ["reduce_output_data"] }, "op_attrs": dics[0], } ] if op_type in ["reduce_any", "reduce_all"]: ops_config[0]["outputs_dtype"] = { "reduce_output_data": np.bool_ } ops = self.generate_op_config(ops_config) program_config = ProgramConfig( ops=ops, weights={}, inputs={ "input_data": TensorConfig( data_gen=partial( generate_input1, out_dtype, dics ) ) }, outputs=["reduce_output_data"], ) if not self.is_program_valid(program_config): continue yield program_config def sample_predictor_configs( self, program_config ) -> (paddle_infer.Config, List[int], float): def generate_dynamic_shape(attrs): self.dynamic_shape.min_input_shape = {"input_data": [1, 3, 32, 32]} self.dynamic_shape.max_input_shape = {"input_data": [4, 3, 64, 64]} self.dynamic_shape.opt_input_shape = {"input_data": [1, 3, 64, 64]} def clear_dynamic_shape(): self.dynamic_shape.min_input_shape = {} self.dynamic_shape.max_input_shape = {} self.dynamic_shape.opt_input_shape = {} def generate_trt_nodes_num(attrs, dynamic_shape): if dynamic_shape: if (not attrs[0]['keep_dim']) and attrs[0]['reduce_all']: return 0, 3 else: return 1, 2 else: if 0 in attrs[0]['dim'] or attrs[0]['reduce_all']: return 0, 3 else: return 1, 2 attrs = [ program_config.ops[i].attrs for i in range(len(program_config.ops)) ] # for static_shape clear_dynamic_shape() self.trt_param.precision = paddle_infer.PrecisionType.Float32 program_config.set_input_type(np.float32) yield self.create_inference_config(), generate_trt_nodes_num( attrs, False ), (1e-5, 1e-5) self.trt_param.precision = paddle_infer.PrecisionType.Half program_config.set_input_type(np.float16) yield self.create_inference_config(), generate_trt_nodes_num( attrs, False ), (1e-3, 1e-3) # for dynamic_shape generate_dynamic_shape(attrs) self.trt_param.precision = paddle_infer.PrecisionType.Float32 program_config.set_input_type(np.float32) yield self.create_inference_config(), generate_trt_nodes_num( attrs, True ), (1e-5, 1e-5) self.trt_param.precision = paddle_infer.PrecisionType.Half program_config.set_input_type(np.float16) yield self.create_inference_config(), generate_trt_nodes_num( attrs, True ), (1e-3, 1e-3) def add_skip_trt_case(self): pass def test(self): self.add_skip_trt_case() self.run_test() if __name__ == "__main__": unittest.main()