# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from functools import partial from typing import Any, Dict, List import numpy as np from program_config import ProgramConfig, TensorConfig from trt_layer_auto_scan_test import SkipReasons, TrtLayerAutoScanTest import paddle.inference as paddle_infer class TrtConvertNearestInterpTest(TrtLayerAutoScanTest): def is_program_valid(self, program_config: ProgramConfig) -> bool: inputs = program_config.inputs weights = program_config.weights attrs = [ program_config.ops[i].attrs for i in range(len(program_config.ops)) ] if attrs[0]['scale'] <= 0 and ( attrs[0]['out_h'] <= 0 or attrs[0]['out_w'] <= 0 ): return False if (attrs[0]['out_h'] <= 0) ^ (attrs[0]['out_w'] <= 0): return False return True def sample_program_configs(self): def generate_input1(attrs: List[Dict[str, Any]]): return np.ones([1, 3, 64, 64]).astype(np.float32) for data_layout in ["NCHW", "NHWC"]: for interp_method in ["nearest"]: for align_corners in [True, False]: for scale in [2.0, -1.0, 0.0]: for out_h in [32, 64, 128 - 32]: for out_w in [32, -32]: dics = [ { "data_layout": data_layout, "interp_method": interp_method, "align_corners": align_corners, "scale": scale, "out_h": out_h, "out_w": out_w, } ] ops_config = [ { "op_type": "nearest_interp", "op_inputs": {"X": ["input_data"]}, "op_outputs": { "Out": [ "nearest_interp_output_data" ] }, "op_attrs": dics[0], } ] ops = self.generate_op_config(ops_config) program_config = ProgramConfig( ops=ops, weights={}, inputs={ "input_data": TensorConfig( data_gen=partial( generate_input1, dics ) ) }, outputs=["nearest_interp_output_data"], ) yield program_config def sample_predictor_configs( self, program_config ) -> (paddle_infer.Config, List[int], float): def generate_dynamic_shape(attrs): self.dynamic_shape.min_input_shape = {"input_data": [1, 3, 32, 32]} self.dynamic_shape.max_input_shape = {"input_data": [4, 3, 64, 64]} self.dynamic_shape.opt_input_shape = {"input_data": [1, 3, 64, 64]} def clear_dynamic_shape(): self.dynamic_shape.min_input_shape = {} self.dynamic_shape.max_input_shape = {} self.dynamic_shape.opt_input_shape = {} def generate_trt_nodes_num(attrs, dynamic_shape): return 1, 2 attrs = [ program_config.ops[i].attrs for i in range(len(program_config.ops)) ] # for static_shape clear_dynamic_shape() self.trt_param.precision = paddle_infer.PrecisionType.Float32 program_config.set_input_type(np.float32) yield self.create_inference_config(), generate_trt_nodes_num( attrs, False ), 1e-5 self.trt_param.precision = paddle_infer.PrecisionType.Half program_config.set_input_type(np.float16) yield self.create_inference_config(), generate_trt_nodes_num( attrs, False ), 1e-2 # for dynamic_shape generate_dynamic_shape(attrs) self.trt_param.precision = paddle_infer.PrecisionType.Float32 program_config.set_input_type(np.float32) yield self.create_inference_config(), generate_trt_nodes_num( attrs, True ), 1e-5 self.trt_param.precision = paddle_infer.PrecisionType.Half program_config.set_input_type(np.float16) yield self.create_inference_config(), generate_trt_nodes_num( attrs, True ), 1e-2 def add_skip_trt_case(self): def teller1(program_config, predictor_config): if ( program_config.ops[0].attrs['scale'] <= 0 and self.dynamic_shape.min_input_shape ): return True if program_config.ops[0].attrs['align_corners']: return True return False self.add_skip_case( teller1, SkipReasons.TRT_NOT_IMPLEMENTED, "NOT Implemented: we need to add support scale <= 0 in dynamic shape in the future", ) def test(self): self.add_skip_trt_case() self.run_test() if __name__ == "__main__": unittest.main()