# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from functools import partial import numpy as np from program_config import ProgramConfig, TensorConfig from trt_layer_auto_scan_test import SkipReasons, TrtLayerAutoScanTest import paddle.inference as paddle_infer class TrtConvertMishTest(TrtLayerAutoScanTest): def is_program_valid(self, program_config: ProgramConfig) -> bool: return True def sample_program_configs(self): def generate_input(batch, dim1, dim2, dim3): shape = [batch] if dim1 != 0: shape.append(dim1) if dim2 != 0: shape.append(dim2) if dim3 != 0: shape.append(dim3) return np.random.random(shape).astype(np.float32) for batch in [1, 4]: for dim1 in [0, 3]: for dim2 in [0, 16]: for dim3 in [0, 32]: for thre in [5.0, 20.0]: self.dim1 = dim1 self.dim2 = dim2 self.dim3 = dim3 if dim1 == 0 and dim2 != 0: continue if dim1 == 0 and dim2 == 0 and dim3 != 0: continue ops_config = [ { "op_type": "mish", "op_inputs": {"X": ["input_data"]}, "op_outputs": {"Out": ["mish_output_data"]}, "op_attrs": {"threshold": thre}, } ] ops = self.generate_op_config(ops_config) program_config = ProgramConfig( ops=ops, weights={}, inputs={ "input_data": TensorConfig( data_gen=partial( generate_input, batch, dim1, dim2, dim3, ) ) }, outputs=["mish_output_data"], ) yield program_config def sample_predictor_configs(self, program_config): def generate_dynamic_shape(attrs): if self.dim1 == 0: self.dynamic_shape.min_input_shape = { "input_data": [1], } self.dynamic_shape.max_input_shape = { "input_data": [4], } self.dynamic_shape.opt_input_shape = { "input_data": [2], } else: if self.dim2 == 0 and self.dim3 == 0: self.dynamic_shape.min_input_shape = { "input_data": [1, 1], } self.dynamic_shape.max_input_shape = { "input_data": [4, 64], } self.dynamic_shape.opt_input_shape = { "input_data": [2, 3], } elif self.dim2 != 0 and self.dim3 != 0: self.dynamic_shape.min_input_shape = { "input_data": [1, 1, 1, 1], } self.dynamic_shape.max_input_shape = { "input_data": [4, 64, 128, 128], } self.dynamic_shape.opt_input_shape = { "input_data": [2, 3, 16, 32], } elif self.dim3 == 0: self.dynamic_shape.min_input_shape = { "input_data": [1, 1, 1], } self.dynamic_shape.max_input_shape = { "input_data": [4, 64, 256], } self.dynamic_shape.opt_input_shape = { "input_data": [2, 3, 128], } def clear_dynamic_shape(): self.dynamic_shape.min_input_shape = {} self.dynamic_shape.max_input_shape = {} self.dynamic_shape.opt_input_shape = {} def generate_trt_nodes_num(attrs, dynamic_shape): return 1, 2 attrs = [ program_config.ops[i].attrs for i in range(len(program_config.ops)) ] # for static_shape clear_dynamic_shape() self.trt_param.precision = paddle_infer.PrecisionType.Float32 program_config.set_input_type(np.float32) yield self.create_inference_config(), generate_trt_nodes_num( attrs, False ), 1e-5 self.trt_param.precision = paddle_infer.PrecisionType.Half program_config.set_input_type(np.float16) yield self.create_inference_config(), generate_trt_nodes_num( attrs, False ), (1e-3, 1e-3) # for dynamic_shape generate_dynamic_shape(attrs) self.trt_param.precision = paddle_infer.PrecisionType.Float32 program_config.set_input_type(np.float32) yield self.create_inference_config(), generate_trt_nodes_num( attrs, True ), 1e-5 self.trt_param.precision = paddle_infer.PrecisionType.Half program_config.set_input_type(np.float16) yield self.create_inference_config(), generate_trt_nodes_num( attrs, True ), (1e-3, 1e-3) def add_skip_trt_case(self): def teller1(program_config, predictor_config): if self.dim1 == 0 and self.dim2 == 0 and self.dim3 == 0: return True return False self.add_skip_case( teller1, SkipReasons.TRT_NOT_SUPPORT, "Trt does not support 1-dimensional input.", ) def test(self): self.add_skip_trt_case() self.run_test() if __name__ == "__main__": unittest.main()