# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from functools import partial from typing import Any, Dict, List import numpy as np from program_config import ProgramConfig, TensorConfig from trt_layer_auto_scan_test import TrtLayerAutoScanTest import paddle.inference as paddle_infer class TrtConvertLookupTableV2Test(TrtLayerAutoScanTest): def sample_program_configs(self): self.trt_param.workspace_size = 102400 def generate_input1(dims, attrs: List[Dict[str, Any]]): if dims == 1: return np.array([[32], [2], [19]]).astype(np.int64) elif dims == 2: return np.array([[[3], [16], [24]], [[6], [4], [47]]]).astype( np.int64 ) else: return np.array( [ [ [[3], [16], [24]], [[30], [16], [14]], [[2], [6], [24]], ], [[[3], [26], [34]], [[3], [16], [24]], [[3], [6], [4]]], [ [[3], [16], [24]], [[53], [16], [54]], [[30], [1], [24]], ], ] ).astype(np.int64) def generate_input2(dims, attrs: List[Dict[str, Any]]): return np.random.uniform(-1, 1, [64, 4]).astype('float32') for dims in [1, 2, 3]: self.dims = dims ops_config = [ { "op_type": "lookup_table", "op_inputs": {"Ids": ["indices"], "W": ["data"]}, "op_outputs": {"Out": ["out_data"]}, "op_attrs": {}, } ] ops = self.generate_op_config(ops_config) program_config = ProgramConfig( ops=ops, weights={ "data": TensorConfig( data_gen=partial(generate_input2, {}, {}) ) }, inputs={ "indices": TensorConfig( data_gen=partial(generate_input1, dims, {}) ) }, outputs=["out_data"], ) yield program_config def sample_predictor_configs( self, program_config ) -> (paddle_infer.Config, List[int], float): def generate_dynamic_shape(attrs): if self.dims == 1: self.dynamic_shape.min_input_shape = { "indices": [1, 1], "data": [64, 4], } self.dynamic_shape.max_input_shape = { "indices": [16, 1], "data": [64, 4], } self.dynamic_shape.opt_input_shape = { "indices": [8, 1], "data": [64, 4], } elif self.dims == 2: self.dynamic_shape.min_input_shape = { "indices": [1, 1, 1], "data": [64, 4], } self.dynamic_shape.max_input_shape = { "indices": [16, 32, 1], "data": [64, 4], } self.dynamic_shape.opt_input_shape = { "indices": [2, 16, 1], "data": [64, 4], } else: self.dynamic_shape.min_input_shape = { "indices": [1, 1, 1, 1], "data": [64, 4], } self.dynamic_shape.max_input_shape = { "indices": [16, 16, 16, 1], "data": [64, 4], } self.dynamic_shape.opt_input_shape = { "indices": [2, 8, 8, 1], "data": [64, 4], } def generate_trt_nodes_num(attrs, dynamic_shape): return 1, 2 attrs = [ program_config.ops[i].attrs for i in range(len(program_config.ops)) ] # for dynamic_shape mode generate_dynamic_shape(attrs) self.trt_param.precision = paddle_infer.PrecisionType.Float32 program_config.set_input_type(np.float32) yield self.create_inference_config(), generate_trt_nodes_num( attrs, True ), 1e-5 self.trt_param.precision = paddle_infer.PrecisionType.Half program_config.set_input_type(np.float16) yield self.create_inference_config(), generate_trt_nodes_num( attrs, True ), (1e-3, 1e-3) def test(self): self.run_test() if __name__ == "__main__": unittest.main()