# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from functools import partial from typing import List import numpy as np from program_config import ProgramConfig, TensorConfig from trt_layer_auto_scan_test import TrtLayerAutoScanTest import paddle.inference as paddle_infer class TrtConvertFlattenContiguousRangeTest(TrtLayerAutoScanTest): def is_program_valid(self, program_config: ProgramConfig) -> bool: return True def sample_program_configs(self): def generate_input(batch): if self.dims == 0: return np.random.random([]).astype(np.float32) elif self.dims == 1: return np.random.random([2]).astype(np.float32) else: return np.random.random([2, batch, 4, 8, 3]).astype(np.float32) for dims in [0, 1, 5]: self.dims = dims if dims == 0: test_dims = 1 else: test_dims = dims for batch in [1, 2, 4]: for start_axis in range(0, test_dims): test_start = start_axis if dims == 0: test_start = -1 for stop_axis in range(test_start, dims): type = "flatten_contiguous_range" op_outputs = { "Out": ["output_data"], "XShape": ["xshape_data"], } ops_config = [ { "op_type": type, "op_inputs": {"X": ["input_data"]}, "op_outputs": op_outputs, "op_attrs": { "start_axis": start_axis, "stop_axis": stop_axis, }, } ] ops = self.generate_op_config(ops_config) program_config = ProgramConfig( ops=ops, weights={}, inputs={ "input_data": TensorConfig( data_gen=partial(generate_input, batch) ) }, outputs=["output_data"], ) yield program_config def sample_predictor_configs( self, program_config ) -> (paddle_infer.Config, List[int], float): def generate_dynamic_shape(attrs): if self.dims == 0: self.dynamic_shape.min_input_shape = {"input_data": []} self.dynamic_shape.max_input_shape = {"input_data": []} self.dynamic_shape.opt_input_shape = {"input_data": []} elif self.dims == 1: self.dynamic_shape.min_input_shape = {"input_data": [2]} self.dynamic_shape.max_input_shape = {"input_data": [2]} self.dynamic_shape.opt_input_shape = {"input_data": [2]} else: self.dynamic_shape.min_input_shape = { "input_data": [2, 1, 4, 8, 3] } self.dynamic_shape.max_input_shape = { "input_data": [2, 4, 4, 8, 3] } self.dynamic_shape.opt_input_shape = { "input_data": [2, 2, 4, 8, 3] } def clear_dynamic_shape(): self.dynamic_shape.max_input_shape = {} self.dynamic_shape.min_input_shape = {} self.dynamic_shape.opt_input_shape = {} def generate_trt_nodes_num(attrs, dynamic_shape): ver = paddle_infer.get_trt_compile_version() if ver[0] * 1000 + ver[1] * 100 + ver[0] * 10 >= 7000: if dynamic_shape: return 1, 2 else: if ( attrs[0]['start_axis'] == 0 or self.dims == 0 or self.dims == 1 ): return 0, 3 else: return 1, 2 else: return 0, 3 attrs = [ program_config.ops[i].attrs for i in range(len(program_config.ops)) ] # for static_shape clear_dynamic_shape() self.trt_param.precision = paddle_infer.PrecisionType.Float32 program_config.set_input_type(np.float32) yield self.create_inference_config(), generate_trt_nodes_num( attrs, False ), 1e-5 self.trt_param.precision = paddle_infer.PrecisionType.Half program_config.set_input_type(np.float16) yield self.create_inference_config(), generate_trt_nodes_num( attrs, False ), (1e-3, 1e-3) # for dynamic_shape generate_dynamic_shape(attrs) self.trt_param.precision = paddle_infer.PrecisionType.Float32 program_config.set_input_type(np.float32) yield self.create_inference_config(), generate_trt_nodes_num( attrs, True ), 1e-5 self.trt_param.precision = paddle_infer.PrecisionType.Half program_config.set_input_type(np.float16) yield self.create_inference_config(), generate_trt_nodes_num( attrs, True ), (1e-3, 1e-3) def test(self): self.run_test() if __name__ == "__main__": unittest.main()