# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from functools import partial from typing import List import numpy as np from program_config import ProgramConfig, TensorConfig from trt_layer_auto_scan_test import TrtLayerAutoScanTest import paddle.inference as paddle_infer class TrtConvertFlattenTest_dim_2(TrtLayerAutoScanTest): def is_program_valid(self, program_config: ProgramConfig) -> bool: return True def sample_program_configs(self): def generate_input(batch): return np.random.random([batch, 32]).astype(np.float32) for batch in [1, 4]: for axis in [0, 1]: for type in ["flatten", "flatten2"]: if type == "flatten": op_outputs = {"Out": ["output_data"]} else: op_outputs = { "Out": ["output_data"], "XShape": ["xshape_data"], } dics = [{"axis": axis}] ops_config = [ { "op_type": "flatten", "op_inputs": {"X": ["input_data"]}, "op_outputs": op_outputs, "op_attrs": dics[0], } ] ops = self.generate_op_config(ops_config) program_config = ProgramConfig( ops=ops, weights={}, inputs={ "input_data": TensorConfig( data_gen=partial(generate_input, batch) ) }, outputs=["output_data"], ) yield program_config def sample_predictor_configs( self, program_config ) -> (paddle_infer.Config, List[int], float): def generate_dynamic_shape(attrs): self.dynamic_shape.min_input_shape = {"input_data": [1, 8]} self.dynamic_shape.max_input_shape = {"input_data": [4, 64]} self.dynamic_shape.opt_input_shape = {"input_data": [2, 32]} def clear_dynamic_shape(): self.dynamic_shape.max_input_shape = {} self.dynamic_shape.min_input_shape = {} self.dynamic_shape.opt_input_shape = {} def generate_trt_nodes_num(attrs, dynamic_shape): ver = paddle_infer.get_trt_compile_version() if ver[0] * 1000 + ver[1] * 100 + ver[0] * 10 >= 7130: if attrs[0]['axis'] == 1: return 1, 2 else: return 0, 3 else: if dynamic_shape: return 0, 3 if attrs[0]['axis'] == 1: return 1, 2 else: return 0, 3 attrs = [ program_config.ops[i].attrs for i in range(len(program_config.ops)) ] # for static_shape clear_dynamic_shape() self.trt_param.precision = paddle_infer.PrecisionType.Float32 program_config.set_input_type(np.float32) yield self.create_inference_config(), generate_trt_nodes_num( attrs, False ), 1e-5 self.trt_param.precision = paddle_infer.PrecisionType.Half program_config.set_input_type(np.float16) yield self.create_inference_config(), generate_trt_nodes_num( attrs, False ), (1e-3, 1e-3) # for dynamic_shape generate_dynamic_shape(attrs) self.trt_param.precision = paddle_infer.PrecisionType.Float32 program_config.set_input_type(np.float32) yield self.create_inference_config(), generate_trt_nodes_num( attrs, True ), 1e-5 self.trt_param.precision = paddle_infer.PrecisionType.Half program_config.set_input_type(np.float16) yield self.create_inference_config(), generate_trt_nodes_num( attrs, True ), (1e-3, 1e-3) def test(self): self.run_test() class TrtConvertFlattenTest_dim_3(TrtLayerAutoScanTest): def is_program_valid(self, program_config: ProgramConfig) -> bool: return True def sample_program_configs(self): def generate_input(batch): return np.random.random([batch, 32, 64]).astype(np.float32) for batch in [1, 4]: for axis in [0, 1, 2]: for type in ["flatten", "flatten2"]: if type == "flatten": op_outputs = {"Out": ["output_data"]} else: op_outputs = { "Out": ["output_data"], "XShape": ["xshape_data"], } dics = [{"axis": axis}] ops_config = [ { "op_type": "flatten", "op_inputs": {"X": ["input_data"]}, "op_outputs": op_outputs, "op_attrs": dics[0], } ] ops = self.generate_op_config(ops_config) program_config = ProgramConfig( ops=ops, weights={}, inputs={ "input_data": TensorConfig( data_gen=partial(generate_input, batch) ) }, outputs=["output_data"], ) yield program_config def sample_predictor_configs( self, program_config ) -> (paddle_infer.Config, List[int], float): def generate_dynamic_shape(attrs): self.dynamic_shape.min_input_shape = {"input_data": [1, 8, 8]} self.dynamic_shape.max_input_shape = {"input_data": [4, 32, 64]} self.dynamic_shape.opt_input_shape = {"input_data": [2, 32, 64]} def clear_dynamic_shape(): self.dynamic_shape.max_input_shape = {} self.dynamic_shape.min_input_shape = {} self.dynamic_shape.opt_input_shape = {} def generate_trt_nodes_num(attrs, dynamic_shape): ver = paddle_infer.get_trt_compile_version() if ver[0] * 1000 + ver[1] * 100 + ver[0] * 10 >= 7130: if attrs[0]['axis'] == 1: return 1, 2 else: return 0, 3 else: if dynamic_shape: return 0, 3 if attrs[0]['axis'] == 1: return 1, 2 else: return 0, 3 attrs = [ program_config.ops[i].attrs for i in range(len(program_config.ops)) ] # for static_shape clear_dynamic_shape() self.trt_param.precision = paddle_infer.PrecisionType.Float32 program_config.set_input_type(np.float32) yield self.create_inference_config(), generate_trt_nodes_num( attrs, False ), 1e-5 self.trt_param.precision = paddle_infer.PrecisionType.Half program_config.set_input_type(np.float16) yield self.create_inference_config(), generate_trt_nodes_num( attrs, False ), (1e-3, 1e-3) # for dynamic_shape generate_dynamic_shape(attrs) self.trt_param.precision = paddle_infer.PrecisionType.Float32 program_config.set_input_type(np.float32) yield self.create_inference_config(), generate_trt_nodes_num( attrs, True ), 1e-5 self.trt_param.precision = paddle_infer.PrecisionType.Half program_config.set_input_type(np.float16) yield self.create_inference_config(), generate_trt_nodes_num( attrs, True ), (1e-3, 1e-3) def test(self): self.run_test() class TrtConvertFlattenTest_dim_4(TrtLayerAutoScanTest): def is_program_valid(self, program_config: ProgramConfig) -> bool: return True def sample_program_configs(self): def generate_input(batch): return np.random.random([batch, 8, 8, 8]).astype(np.float32) for batch in [1, 4]: for axis in [0, 1, 2, 3]: for type in ["flatten", "flatten2"]: if type == "flatten": op_outputs = {"Out": ["output_data"]} else: op_outputs = { "Out": ["output_data"], "XShape": ["xshape_data"], } dics = [{"axis": axis}] ops_config = [ { "op_type": "flatten", "op_inputs": {"X": ["input_data"]}, "op_outputs": op_outputs, "op_attrs": dics[0], } ] ops = self.generate_op_config(ops_config) program_config = ProgramConfig( ops=ops, weights={}, inputs={ "input_data": TensorConfig( data_gen=partial(generate_input, batch) ) }, outputs=["output_data"], ) yield program_config def sample_predictor_configs( self, program_config ) -> (paddle_infer.Config, List[int], float): def generate_dynamic_shape(attrs): self.dynamic_shape.min_input_shape = {"input_data": [1, 4, 4, 4]} self.dynamic_shape.max_input_shape = {"input_data": [4, 32, 32, 32]} self.dynamic_shape.opt_input_shape = {"input_data": [2, 16, 16, 8]} def clear_dynamic_shape(): self.dynamic_shape.max_input_shape = {} self.dynamic_shape.min_input_shape = {} self.dynamic_shape.opt_input_shape = {} def generate_trt_nodes_num(attrs, dynamic_shape): ver = paddle_infer.get_trt_compile_version() if ver[0] * 1000 + ver[1] * 100 + ver[0] * 10 >= 7130: if attrs[0]['axis'] == 1: return 1, 2 else: return 0, 3 else: if dynamic_shape: return 0, 3 if attrs[0]['axis'] == 1: return 1, 2 else: return 0, 3 attrs = [ program_config.ops[i].attrs for i in range(len(program_config.ops)) ] # for static_shape clear_dynamic_shape() self.trt_param.precision = paddle_infer.PrecisionType.Float32 program_config.set_input_type(np.float32) yield self.create_inference_config(), generate_trt_nodes_num( attrs, False ), 1e-5 self.trt_param.precision = paddle_infer.PrecisionType.Half program_config.set_input_type(np.float16) yield self.create_inference_config(), generate_trt_nodes_num( attrs, False ), (1e-3, 1e-3) # for dynamic_shape generate_dynamic_shape(attrs) self.trt_param.precision = paddle_infer.PrecisionType.Float32 program_config.set_input_type(np.float32) yield self.create_inference_config(), generate_trt_nodes_num( attrs, True ), 1e-5 self.trt_param.precision = paddle_infer.PrecisionType.Half program_config.set_input_type(np.float16) yield self.create_inference_config(), generate_trt_nodes_num( attrs, True ), (1e-3, 1e-3) def test(self): self.run_test() class TrtConvertFlattenTest_dim_5(TrtLayerAutoScanTest): def is_program_valid(self, program_config: ProgramConfig) -> bool: return True def sample_program_configs(self): def generate_input(batch): return np.random.random([batch, 8, 8, 8]).astype(np.float32) for batch in [1, 4]: for axis in [0, 1, 2, 3, 4]: for type in ["flatten", "flatten2"]: if type == "flatten": op_outputs = {"Out": ["output_data"]} else: op_outputs = { "Out": ["output_data"], "XShape": ["xshape_data"], } dics = [{"axis": axis}] ops_config = [ { "op_type": "flatten", "op_inputs": {"X": ["input_data"]}, "op_outputs": op_outputs, "op_attrs": dics[0], } ] ops = self.generate_op_config(ops_config) program_config = ProgramConfig( ops=ops, weights={}, inputs={ "input_data": TensorConfig( data_gen=partial(generate_input, batch) ) }, outputs=["output_data"], ) yield program_config def sample_predictor_configs( self, program_config ) -> (paddle_infer.Config, List[int], float): def generate_dynamic_shape(attrs): self.dynamic_shape.min_input_shape = {"input_data": [1, 4, 4, 4]} self.dynamic_shape.max_input_shape = {"input_data": [4, 16, 16, 8]} self.dynamic_shape.opt_input_shape = {"input_data": [2, 16, 16, 8]} def clear_dynamic_shape(): self.dynamic_shape.max_input_shape = {} self.dynamic_shape.min_input_shape = {} self.dynamic_shape.opt_input_shape = {} def generate_trt_nodes_num(attrs, dynamic_shape): ver = paddle_infer.get_trt_compile_version() if ver[0] * 1000 + ver[1] * 100 + ver[0] * 10 >= 7130: if attrs[0]['axis'] == 1: return 1, 2 else: return 0, 3 else: if dynamic_shape: return 0, 3 if attrs[0]['axis'] == 1: return 1, 2 else: return 0, 3 attrs = [ program_config.ops[i].attrs for i in range(len(program_config.ops)) ] # for static_shape clear_dynamic_shape() self.trt_param.precision = paddle_infer.PrecisionType.Float32 program_config.set_input_type(np.float32) yield self.create_inference_config(), generate_trt_nodes_num( attrs, False ), 1e-5 self.trt_param.precision = paddle_infer.PrecisionType.Half program_config.set_input_type(np.float16) yield self.create_inference_config(), generate_trt_nodes_num( attrs, False ), (1e-3, 1e-3) # for dynamic_shape generate_dynamic_shape(attrs) self.trt_param.precision = paddle_infer.PrecisionType.Float32 program_config.set_input_type(np.float32) yield self.create_inference_config(), generate_trt_nodes_num( attrs, True ), 1e-5 self.trt_param.precision = paddle_infer.PrecisionType.Half program_config.set_input_type(np.float16) yield self.create_inference_config(), generate_trt_nodes_num( attrs, True ), (1e-3, 1e-3) def test(self): self.run_test() if __name__ == "__main__": unittest.main()