- backward_op : add_double_grad forward : add_grad (Tensor x, Tensor y, Tensor grad_out, int axis = -1) -> Tensor(grad_x), Tensor(grad_y) args : (Tensor y, Tensor grad_out, Tensor grad_x_grad, Tensor grad_y_grad, int axis = -1) output : Tensor(grad_out_grad) infer_meta : func : UnchangedInferMeta param : [grad_out] kernel : func : add_double_grad optional : grad_x_grad, grad_y_grad backward : add_triple_grad inplace : (grad_x_grad -> grad_out_grad) composite : add_double_grad(y, grad_out, grad_x_grad, grad_y_grad, axis, grad_out_grad) - backward_op : add_grad forward : add (Tensor x, Tensor y) -> Tensor(out) args : (Tensor x, Tensor y, Tensor out_grad, int axis = -1) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [x, y] kernel : func : add_grad no_need_buffer : x, y composite : add_grad(x, y, out_grad, axis, x_grad, y_grad) backward : add_double_grad inplace : (out_grad -> x_grad) - backward_op : add_triple_grad forward : add_double_grad (Tensor y, Tensor grad_out, Tensor grad_grad_x, Tensor grad_grad_y, int axis = -1) -> Tensor(grad_grad_out) args : (Tensor grad_grad_x, Tensor grad_grad_y, Tensor grad_grad_out_grad, int axis = -1) output : Tensor(grad_grad_x_grad), Tensor(grad_grad_y_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [grad_grad_x, grad_grad_y] kernel : func : add_triple_grad inplace : (grad_grad_out_grad -> grad_grad_x_grad) composite : add_triple_grad (grad_grad_x, grad_grad_y, grad_grad_out_grad, axis, grad_grad_x_grad, grad_grad_y_grad ) - backward_op : amax_grad forward: amax (Tensor x, int64_t[] axis={}, bool keepdim=false) -> Tensor(out) args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] axis={}, bool keepdim=false, bool reduce_all=false) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : amax_grad - backward_op : amin_grad forward: amin (Tensor x, int64_t[] axis={}, bool keepdim=false) -> Tensor(out) args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] axis={}, bool keepdim=false, bool reduce_all=false) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : amin_grad - backward_op : assign_grad forward : assign (Tensor x) -> Tensor(out) args : (Tensor out_grad) output : Tensor(x_grad) composite: assign_grad(out_grad, x_grad) invoke : assign(out_grad) - backward_op : assign_out__grad forward : assign_out_ (Tensor x, Tensor output) -> Tensor(out) args : (Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta kernel : func : assign inplace : (out_grad -> x_grad) - backward_op : batch_norm_double_grad forward : batch_norm_grad (Tensor x, Tensor scale, Tensor bias, Tensor out_mean, Tensor out_variance, Tensor saved_mean, Tensor saved_variance, Tensor reserve_space, Tensor grad_out, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics) -> Tensor(grad_x), Tensor(grad_scale), Tensor(grad_bias) args : (Tensor x, Tensor scale, Tensor out_mean, Tensor out_variance, Tensor saved_mean, Tensor saved_variance, Tensor grad_out, Tensor grad_x_grad, Tensor grad_scale_grad, Tensor grad_bias_grad, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics) output : Tensor(x_grad), Tensor(scale_grad), Tensor(grad_out_grad) infer_meta : func : GeneralTernaryGradInferMeta param : [x, scale, x] kernel : func : batch_norm_double_grad data_type : x optional : out_mean, out_variance, grad_x_grad, grad_scale_grad, grad_bias_grad inplace : (grad_out -> grad_out_grad) - backward_op : batch_norm_grad forward : batch_norm (Tensor x, Tensor mean, Tensor variance, Tensor scale, Tensor bias, bool is_test, float momentum, float epsilon, str data_layout, bool use_global_stats, bool trainable_statistics) -> Tensor(out), Tensor(mean_out), Tensor(variance_out), Tensor(saved_mean), Tensor(saved_variance), Tensor(reserve_space) args : (Tensor x, Tensor scale, Tensor bias, Tensor mean_out, Tensor variance_out, Tensor saved_mean, Tensor saved_variance, Tensor reserve_space, Tensor out_grad, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics) output : Tensor(x_grad), Tensor(scale_grad), Tensor(bias_grad) infer_meta : func : GeneralTernaryGradInferMeta param : [x, scale, bias] kernel : func : batch_norm_grad data_type : out_grad optional : mean_out, variance_out, reserve_space composite: batch_norm_grad(x, scale, bias, mean_out, variance_out, saved_mean, saved_variance, reserve_space, out_grad, momentum, epsilon, data_layout, is_test, use_global_stats, trainable_statistics) backward : batch_norm_double_grad - backward_op : cast_grad forward : cast (Tensor x, DataType dtype) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) invoke : cast (out_grad, x.dtype()) composite: cast_grad(x, out_grad, x_grad) no_need_buffer : x - backward_op : channel_shuffle_grad forward : channel_shuffle (Tensor x, int groups, str data_format="NCHW") -> Tensor(out) args : (Tensor out_grad, int groups, str data_format="NCHW") output : Tensor(x_grad) infer_meta : func : ChannelShuffleGradInferMeta kernel : func : channel_shuffle_grad - backward_op : concat_double_grad forward : concat_grad (Tensor[] x, Tensor grad_out, Scalar axis) -> Tensor[](grad_x) args : (Tensor[] grad_x_grad, Scalar axis = 0) output : Tensor(grad_out_grad) invoke : concat(grad_x_grad, axis) - backward_op : concat_grad forward : concat (Tensor[] x, Scalar axis) -> Tensor(out) args : (Tensor[] x, Tensor out_grad, Scalar axis = 0) output : Tensor[](x_grad){x.size()} infer_meta : func : UnchangedMultiInferMeta param : [x] kernel : func : concat_grad composite : concat_grad(x, out_grad, axis, x_grad) no_need_buffer : x backward : concat_double_grad - backward_op : conv2d_transpose_double_grad forward : conv2d_transpose_grad(Tensor x, Tensor filter, Tensor grad_out, int[] strides, int[] paddings, int[] output_padding, IntArray output_size, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(grad_x), Tensor(grad_filter) args : (Tensor x, Tensor filter, Tensor grad_out, Tensor grad_x_grad, Tensor grad_filter_grad, int[] strides, int[] paddings, int[] output_padding, IntArray output_size, str padding_algorithm, int groups, int[] dilations, str data_format) output : Tensor(x_grad), Tensor(filter_grad), Tensor(grad_out_grad) infer_meta : func : Conv2dTransposeDoubleGradInferMeta kernel : func : conv2d_transpose_double_grad data_type : x - backward_op : conv2d_transpose_grad forward : conv2d_transpose(Tensor x, Tensor filter, int[] strides={1, 1}, int[] paddings={0, 0}, int[] output_padding={}, IntArray output_size={}, str padding_algorithm="EXPLICIT", int groups=1, int[] dilations={1, 1}, str data_format="NCHW") -> Tensor(out) args : (Tensor x, Tensor filter, Tensor out_grad, int[] strides, int[] paddings, int[] output_padding, IntArray output_size, str padding_algorithm, int groups, int[] dilations, str data_format) output : Tensor(x_grad), Tensor(filter_grad) infer_meta : func : Conv2dTransposeGradInferMeta kernel : func : conv2d_transpose_grad data_type : x backward : conv2d_transpose_double_grad - backward_op : deformable_conv_grad forward : deformable_conv(Tensor x, Tensor offset, Tensor filter, Tensor mask, int[] strides, int[] paddings, int[] dilations, int deformable_groups, int groups, int im2col_step) -> Tensor(out) args : (Tensor x, Tensor offset, Tensor filter, Tensor mask, Tensor out_grad, int[] strides, int[] paddings, int[] dilations, int deformable_groups, int groups, int im2col_step) output : Tensor(x_grad), Tensor(offset_grad), Tensor(filter_grad), Tensor(mask_grad) infer_meta : func : DeformableConvGradInferMeta kernel : func : deformable_conv_grad data_type : x optional : mask - backward_op : depthwise_conv2d_transpose_grad forward : depthwise_conv2d_transpose(Tensor x, Tensor filter, int[] strides={1, 1}, int[] paddings={0, 0}, int[] output_padding={}, IntArray output_size={}, str padding_algorithm="EXPLICIT", int groups=1, int[] dilations={1, 1}, str data_format="NCHW") -> Tensor(out) args : (Tensor x, Tensor filter, Tensor out_grad, int[] strides, int[] paddings, int[] output_padding, IntArray output_size, str padding_algorithm, int groups, int[] dilations, str data_format) output : Tensor(x_grad), Tensor(filter_grad) infer_meta : func : Conv2dTransposeGradInferMeta kernel : func : depthwise_conv2d_transpose_grad data_type : x - backward_op : divide_double_grad forward : divide_grad (Tensor x, Tensor y, Tensor out, Tensor grad_out, int axis = -1) -> Tensor(grad_x), Tensor(grad_y) args : (Tensor y, Tensor out, Tensor grad_x, Tensor grad_x_grad, Tensor grad_y_grad, int axis = -1) output : Tensor(y_grad), Tensor(out_grad), Tensor(grad_out_grad) infer_meta : func : GeneralTernaryGradInferMeta param : [y, grad_x, grad_x] kernel : func : divide_double_grad data_type : out optional : grad_x_grad, grad_y_grad inplace : (grad_x_grad -> grad_out_grad) - backward_op : divide_grad forward : divide (Tensor x, Tensor y) -> Tensor(out) args : (Tensor x, Tensor y, Tensor out, Tensor out_grad, int axis = -1) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [x, y] kernel : func : divide_grad composite : divide_grad(x, y, out, out_grad, axis, x_grad, y_grad) backward : divide_double_grad - backward_op : dropout_grad forward : dropout (Tensor x, Tensor seed_tensor, Scalar p, bool is_test, str mode, int seed, bool fix_seed) -> Tensor(out), Tensor(mask) args : (Tensor mask, Tensor out_grad, Scalar p, bool is_test, str mode) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [out_grad] kernel : func : dropout_grad - backward_op : einsum_grad forward : einsum (Tensor[] x, str equation) -> Tensor(out), Tensor[](inner_cache), Tensor[](x_shape) args : (Tensor[] x_shape, Tensor[] inner_cache, Tensor out_grad, str equation) output : Tensor[](x_grad){x_shape.size()} infer_meta : func : UnchangedMultiInferMeta param : [x_shape] kernel : func : einsum_grad - backward_op : elementwise_pow_grad forward : elementwise_pow(Tensor x, Tensor y) -> Tensor(out) args : (Tensor x, Tensor y, Tensor out_grad) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param: [x, y] composite : elementwise_pow_grad(x, y, out_grad, axis, x_grad, y_grad) kernel : func : elementwise_pow_grad - backward_op : embedding_grad forward : embedding (Tensor x, Tensor weight, int64_t padding_idx=-1, bool sparse=false) -> Tensor(out) args : (Tensor x, Tensor weight, Tensor out_grad, int64_t padding_idx=-1, bool sparse=false) output : Tensor(weight_grad) invoke : embedding_grad_impl(x, weight, out_grad, padding_idx, sparse, weight_grad) no_need_buffer : weight - backward_op : exponential__grad forward : exponential_ (Tensor x, float lam) -> Tensor(out) args : (Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta invoke : zeros_like(out_grad) - backward_op : fmin_grad forward : fmin(Tensor x, Tensor y) -> Tensor(out) args : (Tensor x, Tensor y, Tensor out_grad) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param: [x, y] kernel : func : fmin_grad - backward_op : frobenius_norm_grad forward : frobenius_norm(Tensor x, int64_t[] axis, bool keep_dim, bool reduce_all) -> Tensor(out) args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] axis, bool keep_dim, bool reduce_all) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : frobenius_norm_grad - backward_op : hardswish_grad forward : hardswish (Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : hardswish_grad inplace : (out_grad -> x_grad) - backward_op : heaviside_grad forward : heaviside (Tensor x, Tensor y) -> Tensor(out) args : (Tensor x, Tensor y, Tensor out_grad) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [x, y] kernel : func : heaviside_grad - backward_op : hsigmoid_loss_grad forward : hsigmoid_loss (Tensor x, Tensor label, Tensor w, Tensor bias, Tensor path, Tensor code, int num_classes, bool is_sparse) -> Tensor(out), Tensor(pre_out), Tensor(w_out) args : (Tensor x, Tensor w, Tensor label, Tensor path, Tensor code, Tensor bias, Tensor pre_out, Tensor out_grad, int num_classes, bool is_sparse) output : Tensor(x_grad), Tensor(w_grad), Tensor(bias_grad) infer_meta : func : GeneralTernaryGradInferMeta param : [x ,w, bias] optional: path, code, bias kernel : func : hsigmoid_loss_grad - backward_op : logsumexp_grad forward : logsumexp(Tensor x, int64_t[] axis, bool keepdim, bool reduce_all) -> Tensor(out) args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] axis, bool keepdim, bool reduce_all) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : logsumexp_grad - backward_op : matmul_double_grad forward : matmul_grad (Tensor x, Tensor y, Tensor grad_out, bool transpose_x=false, bool transpose_y=false) -> Tensor(grad_x), Tensor(grad_y) args : (Tensor x, Tensor y, Tensor grad_out, Tensor grad_x_grad, Tensor grad_y_grad, bool transpose_x=false, bool transpose_y=false) output : Tensor(x_grad), Tensor(y_grad), Tensor(grad_out_grad) infer_meta : func : GeneralTernaryGradInferMeta param : [x, y, grad_out] kernel : func : matmul_double_grad composite : matmul_double_grad(x, y, grad_out, grad_x_grad, grad_y_grad, transpose_x=false, transpose_y=false) optional : grad_x_grad, grad_y_grad - backward_op : matmul_grad forward : matmul (Tensor x, Tensor y, bool transpose_x=false, bool transpose_y=false) -> Tensor(out) args : (Tensor x, Tensor y, Tensor out_grad, bool transpose_x=false, bool transpose_y=false) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [x, y] kernel : func : matmul_grad backward : matmul_double_grad - backward_op : max_grad forward: max (Tensor x, IntArray axis={}, bool keepdim=false) -> Tensor(out) args : (Tensor x, Tensor out, Tensor out_grad, IntArray axis={}, bool keepdim=false, bool reduce_all=false) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : max_grad composite : max_grad(x, out, out_grad, axis, keepdim, reduce_all, x_grad) - backward_op : maximum_grad forward : maximum(Tensor x, Tensor y) -> Tensor(out) args : (Tensor x, Tensor y, Tensor out_grad) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param: [x, y] kernel : func : maximum_grad composite : maximum_grad(x, y, out_grad, axis, x_grad, y_grad) - backward_op : mean_double_grad forward: mean_grad (Tensor x, Tensor grad_out, IntArray axis={}, bool keepdim=false, bool reduce_all = false) -> Tensor(grad_x) args : (Tensor grad_x_grad, IntArray axis={}, bool keepdim=false) output : Tensor(grad_out_grad) invoke : mean(grad_x_grad, axis, keepdim) - backward_op : mean_grad forward: mean (Tensor x, IntArray axis={}, bool keepdim=false) -> Tensor(out) args : (Tensor x, Tensor out_grad, IntArray axis={}, bool keepdim=false, bool reduce_all=false) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : mean_grad backward : mean_double_grad no_need_buffer : x - backward_op : min_grad forward: min (Tensor x, IntArray axis={}, bool keepdim=false) -> Tensor(out) args : (Tensor x, Tensor out, Tensor out_grad, IntArray axis={}, bool keepdim=false, bool reduce_all=false) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : min_grad - backward_op : minimum_grad forward : minimum(Tensor x, Tensor y) -> Tensor(out) args : (Tensor x, Tensor y, Tensor out_grad) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param: [x, y] kernel : func : minimum_grad composite : minimum_grad(x, y, out_grad, axis, x_grad, y_grad) - backward_op : mish_grad forward : mish (Tensor x, float threshold) -> Tensor(out) args : (Tensor x, Tensor out_grad, float threshold) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : mish_grad inplace : (out_grad -> x_grad) - backward_op : multiply_double_grad forward : multiply_grad (Tensor x, Tensor y, Tensor grad_out, int axis = -1) -> Tensor(grad_x), Tensor(grad_y) args : (Tensor x, Tensor y, Tensor grad_out, Tensor grad_x_grad, Tensor grad_y_grad, int axis = -1) output : Tensor(x_grad), Tensor(y_grad), Tensor(grad_out_grad) infer_meta : func : GeneralTernaryGradInferMeta param : [x, y, grad_out] kernel : func : multiply_double_grad optional : grad_x_grad, grad_y_grad inplace : (grad_x_grad -> grad_out_grad) backward : multiply_triple_grad composite : multiply_double_grad(x, y, grad_out, grad_x_grad, grad_y_grad, axis, x_grad, y_grad, grad_out_grad) - backward_op : multiply_grad forward : multiply (Tensor x, Tensor y) -> Tensor(out) args : (Tensor x, Tensor y, Tensor out_grad, int axis = -1) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [x, y] kernel : func : multiply_grad composite: multiply_grad(x, y, out_grad, axis, x_grad, y_grad) backward : multiply_double_grad - backward_op : multiply_triple_grad forward : multiply_double_grad (Tensor x, Tensor y, Tensor fwd_grad_out, Tensor fwd_grad_grad_x, Tensor fwd_grad_grad_y, int aixs = -1) -> Tensor(grad_x), Tensor(grad_y), Tensor(grad_grad_out) args : (Tensor x, Tensor y, Tensor fwd_grad_out, Tensor fwd_grad_grad_x, Tensor fwd_grad_grad_y, Tensor grad_x_grad, Tensor grad_y_grad, Tensor grad_grad_out_grad, int axis = -1) output : Tensor(x_grad), Tensor(y_grad), Tensor(fwd_grad_out_grad), Tensor(fwd_grad_grad_x_grad), Tensor(fwd_grad_grad_y_grad) infer_meta : func : GeneralQuinaryGradInferMeta param : [x, y, fwd_grad_out, fwd_grad_grad_x, fwd_grad_grad_y] kernel : func : multiply_triple_grad optional : fwd_grad_grad_x, fwd_grad_grad_y, grad_x_grad, grad_y_grad, grad_grad_out_grad - backward_op : norm_grad forward : norm (Tensor x, int axis, float epsilon, bool is_test) -> Tensor(out), Tensor(norm) args : (Tensor x, Tensor norm, Tensor out_grad, int axis, float epsilon, bool is_test) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : norm_grad - backward_op : pad_double_grad forward : pad_grad(Tensor x, Tensor grad_out, int[] paddings, Scalar pad_value) -> Tensor(grad_x) args : (Tensor grad_x_grad, int[] paddings, Scalar pad_value) output : Tensor(grad_out_grad) infer_meta : func : PadInferMeta kernel : func : pad - backward_op : pad_grad forward : pad(Tensor x, int[] paddings, Scalar pad_value) -> Tensor(out) args : (Tensor x, Tensor out_grad, int[] paddings, Scalar pad_value) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : pad_grad param: [out_grad, paddings, pad_value] no_need_buffer : x composite : pad_grad(x, out_grad, paddings, pad_value, x_grad) backward : pad_double_grad - backward_op : pool2d_double_grad forward : pool2d_grad(Tensor x, Tensor out, Tensor grad_out, IntArray kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm) -> Tensor(grad_x) args : (Tensor x, Tensor grad_x_grad, IntArray kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm) output : Tensor(grad_out_grad) infer_meta : func : Pool2DInferMeta param : [grad_x_grad, kernel_size, strides, paddings, ceil_mode, exclusive, data_format, pooling_type, global_pooling, adaptive, padding_algorithm] kernel : func : pool2d_double_grad param : [grad_x_grad, kernel_size, strides, paddings, ceil_mode, exclusive, data_format, pooling_type, global_pooling, adaptive, padding_algorithm] no_need_buffer : x - backward_op : pool2d_grad forward : pool2d(Tensor x, IntArray kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm) -> Tensor(out) args : (Tensor x, Tensor out, Tensor out_grad, IntArray kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : pool2d_grad param : [x, out, out_grad, kernel_size, strides, paddings, ceil_mode, exclusive, data_format, pooling_type, global_pooling, adaptive, padding_algorithm] backward : pool2d_double_grad - backward_op : pool3d_grad forward : pool3d(Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm) -> Tensor(out) args : (Tensor x, Tensor out, Tensor out_grad, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : pool3d_grad param : [x, out, out_grad, kernel_size, strides, paddings, ceil_mode, exclusive, data_format, pooling_type, global_pooling, adaptive, padding_algorithm] - backward_op : prod_grad forward : prod (Tensor x, IntArray dims, bool keep_dim, bool reduce_all) -> Tensor(out) args : (Tensor x, Tensor out, Tensor out_grad, IntArray dims, bool keep_dim, bool reduce_all) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : prod_grad composite: prod_grad(x, out, out_grad, dims, keep_dim, reduce_all, x_grad) - backward_op : relu6_grad forward : relu6 (Tensor x) -> Tensor(out) args : (Tensor out, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [out] kernel : func : relu6_grad inplace : (out_grad -> x_grad) - backward_op : repeat_interleave_grad forward : repeat_interleave(Tensor x, int repeats, int axis) -> Tensor(out) args : (Tensor x, Tensor out_grad, int repeats, int axis) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : repeat_interleave_grad - backward_op : repeat_interleave_with_tensor_index_grad forward : repeat_interleave_with_tensor_index(Tensor x, Tensor repeats, int axis) -> Tensor(out) args : (Tensor x, Tensor repeats, Tensor out_grad, int axis) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : repeat_interleave_with_tensor_index_grad data_type : x - backward_op : reshape_double_grad forward : reshape_grad (Tensor xshape, Tensor grad_out) -> Tensor(grad_x) args : (Tensor grad_out, Tensor grad_x_grad) output : Tensor(grad_out_grad) infer_meta : func : UnchangedInferMeta param : [grad_out] kernel : func : reshape_double_grad no_need_buffer : grad_out inplace : (grad_x_grad -> grad_out_grad) - backward_op : reshape_grad forward : reshape (Tensor x, IntArray shape) -> Tensor(out), Tensor(xshape) args : (Tensor xshape, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : KernelWithXShapeInferMeta param : [xshape] kernel : func : reshape_grad param : [out_grad] data_type: out_grad backend: out_grad layout: out_grad backward : reshape_double_grad inplace : (out_grad -> x_grad) - backward_op : rnn_grad forward : rnn (Tensor x, Tensor[] pre_state, Tensor[] weight_list, Tensor sequence_length, Tensor dropout_state_in, float dropout_prob, bool is_bidirec, int input_size, int hidden_size, int num_layers, str mode, int seed, bool is_test) -> Tensor(out), Tensor(dropout_state_out), Tensor[](state), Tensor(reserve) args : (Tensor x, Tensor[] pre_state, Tensor[] weight_list, Tensor sequence_length, Tensor out, Tensor dropout_state_out, Tensor reserve, Tensor out_grad, Tensor[] state_grad, float dropout_prob, bool is_bidirec, int input_size, int hidden_size, int num_layers, str mode, int seed, bool is_test) output : Tensor(x_grad), Tensor[](pre_state_grad){pre_state.size()}, Tensor[](weight_list_grad){weight_list.size()} infer_meta : func : RnnGradInferMeta param : [x, pre_state, weight_list] kernel : func : rnn_grad data_type: out_grad optional : sequence_length - backward_op : rrelu_grad forward : rrelu (Tensor x, float lower, float upper, bool is_test) -> Tensor(out), Tensor(noise) args : (Tensor x, Tensor noise, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : RReluGradInferMeta param : [out_grad, noise] kernel : func : rrelu_grad data_type : x - backward_op : slice_double_grad forward : slice_grad (Tensor input, Tensor grad_out, int64_t[] axes, IntArray starts, IntArray ends, int64_t[] infer_flags, int64_t[] decrease_axis) -> Tensor(grad_input) args : (Tensor grad_input_grad, int64_t[] axes, IntArray starts, IntArray ends, int64_t[] infer_flags, int64_t[] decrease_axis) output : Tensor(grad_out_grad) invoke : slice(grad_input_grad, axes, starts, ends, infer_flags, decrease_axis) - backward_op : slice_grad forward : slice (Tensor input, int64_t[] axes, IntArray starts, IntArray ends, int64_t[] infer_flags, int64_t[] decrease_axis) -> Tensor(out) args : (Tensor input, Tensor out_grad, int64_t[] axes, IntArray starts, IntArray ends, int64_t[] infer_flags, int64_t[] decrease_axis) output : Tensor(input_grad) infer_meta : func : UnchangedInferMeta param : [input] kernel : func : slice_grad composite: slice_grad(input, out_grad, axes, starts, ends, infer_flags, decrease_axis, input_grad) backward : slice_double_grad no_need_buffer : input - backward_op : softmax_grad forward : softmax (Tensor x, int axis) -> Tensor(out) args : (Tensor out, Tensor out_grad, int axis) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [out] kernel : func : softmax_grad composite : softmax_grad(out, out_grad, axis, x_grad) - backward_op : split_grad forward : split (Tensor x, IntArray num_or_sections, Scalar axis) -> Tensor[](out) args : (Tensor[] out_grad, Scalar axis = -1) output : Tensor(x_grad) invoke : concat( out_grad, axis) composite : split_grad(out_grad, axis, x_grad) - backward_op : split_with_num_grad forward : split_with_num (Tensor x, int num, Scalar axis) -> Tensor[](out) args : (Tensor[] out_grad, Scalar axis = -1) output : Tensor(x_grad) invoke : concat( out_grad, axis) composite : split_grad(out_grad, axis, x_grad) - backward_op : strided_slice_grad forward : strided_slice (Tensor x, int[] axes, IntArray starts, IntArray ends, IntArray strides) -> Tensor(out) args : (Tensor x, Tensor out_grad, int[] axes, IntArray starts, IntArray ends, IntArray strides) output : Tensor(x_grad) infer_meta : func : GeneralUnaryGradInferMeta param : [x] kernel : func : strided_slice_grad no_need_buffer : x - backward_op : subtract_double_grad forward : subtract_grad (Tensor x, Tensor y, Tensor grad_out, int axis = -1) -> Tensor(grad_x), Tensor(grad_y) args : (Tensor y, Tensor grad_out, Tensor grad_x_grad, Tensor grad_y_grad, int axis = -1) output : Tensor(grad_out_grad) infer_meta : func : UnchangedInferMeta param : [grad_out] kernel : func : subtract_double_grad optional : grad_x_grad, grad_y_grad no_need_buffer : y, grad_out inplace : (grad_x_grad -> grad_out_grad) composite : subtract_double_grad(y, grad_out, grad_x_grad, grad_y_grad, axis, grad_out_grad) - backward_op : subtract_grad forward : subtract (Tensor x, Tensor y) -> Tensor(out) args : (Tensor x, Tensor y, Tensor out_grad, int axis = -1) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : GeneralBinaryGradInferMeta param : [x, y] kernel : func : subtract_grad no_need_buffer : x, y composite : subtract_grad(x, y, out_grad, axis, x_grad, y_grad) backward : subtract_double_grad inplace : (out_grad -> x_grad) - backward_op : sum_double_grad forward : sum_grad (Tensor x, Tensor grad_out, IntArray axis, bool keepdim, bool reduce_all=false) -> Tensor(grad_x) args : (Tensor grad_x_grad, IntArray axis={}, bool keepdim=false) output : Tensor(grad_out_grad) invoke : sum(grad_x_grad, axis, grad_x_grad.dtype(), keepdim) - backward_op : sum_grad forward : sum (Tensor x, IntArray axis={}, DataType dtype=DataType::UNDEFINED, bool keepdim=false) -> Tensor(out) args : (Tensor x, Tensor out_grad, IntArray axis, bool keepdim, bool reduce_all=false) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : sum_grad composite : sum_grad(x, out_grad, axis, keepdim, reduce_all, x_grad) no_need_buffer : x backward : sum_double_grad - backward_op : swish_grad forward : swish (Tensor x) -> Tensor(out) args : (Tensor x, Tensor out_grad) output : Tensor(x_grad) infer_meta : func : GeneralUnaryGradInferMeta param : [x] kernel : func : swish_grad inplace : (out_grad -> x_grad) - backward_op : sync_batch_norm_grad forward : sync_batch_norm_ (Tensor x, Tensor mean, Tensor variance, Tensor scale, Tensor bias, bool is_test, float momentum, float epsilon, str data_layout, bool use_global_stats, bool trainable_statistics) -> Tensor(out), Tensor(mean_out), Tensor(variance_out), Tensor(saved_mean), Tensor(saved_variance), Tensor(reserve_space) args : (Tensor x, Tensor scale, Tensor bias, Tensor saved_mean, Tensor saved_variance, Tensor reserve_space, Tensor out_grad, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics) output : Tensor(x_grad), Tensor(scale_grad), Tensor(bias_grad) infer_meta : func : GeneralTernaryGradInferMeta param : [x, scale, bias] kernel : func : sync_batch_norm_grad data_type : out_grad optional : reserve_space - backward_op : tile_double_grad forward : tile_grad (Tensor x, Tensor grad_out, IntArray repeat_times) -> Tensor(grad_x) args : (Tensor grad_x_grad, IntArray repeat_times) output : Tensor(grad_out_grad) invoke : tile(grad_x_grad, repeat_times) - backward_op : tile_grad forward : tile (Tensor x, IntArray repeat_times) -> Tensor(out) args : (Tensor x, Tensor out_grad, IntArray repeat_times) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : tile_grad no_need_buffer : x composite : tile_grad(x, outgrad, repeat_times, x_grad) backward : tile_double_grad - backward_op : trans_layout_grad forward : trans_layout (Tensor x, int[] perm) -> Tensor(out) args : (Tensor x, Tensor out_grad, int[] perm) output : Tensor(x_grad) infer_meta : func : TransLayoutGradInferMeta kernel : func : trans_layout_grad - backward_op : transpose_double_grad forward : transpose_grad (Tensor grad_out, int[] perm) -> Tensor(grad_x) args : (Tensor grad_x_grad, int[] perm) output : Tensor(grad_out_grad) invoke : transpose(grad_x_grad, perm) - backward_op : transpose_grad forward : transpose (Tensor x, int[] perm) -> Tensor(out) args : (Tensor out_grad, int[] perm) output : Tensor(x_grad) infer_meta : func : TransposeGradInferMeta param : [out_grad, perm] kernel : func : transpose_grad backward : transpose_double_grad composite: transpose_grad(out_grad, perm, x_grad) - backward_op : tril_grad forward : tril(Tensor x, int diagonal) -> Tensor(out) args : (Tensor out_grad, int diagonal) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [out_grad] kernel : func : tril_grad - backward_op : triu_grad forward : triu(Tensor x, int diagonal) -> Tensor(out) args : (Tensor out_grad, int diagonal) output : Tensor(x_grad) infer_meta : func : UnchangedInferMeta param : [out_grad] kernel : func : triu_grad - backward_op: unpool_grad forward: unpool (Tensor x, Tensor indices, int[] ksize, int[] strides, int[] padding, IntArray output_size, str data_format) -> Tensor(out) args: (Tensor x, Tensor indices, Tensor out, Tensor out_grad, int[] ksize, int[] strides, int[] padding, IntArray output_size, str data_format) output: Tensor(x_grad) infer_meta: func: UnchangedInferMeta param : [x] kernel: func: unpool_grad data_type: x