# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import contextlib import numpy as np import paddle from paddle import _legacy_C_ops from paddle.common_ops_import import Variable from paddle.fluid import core from paddle.fluid.data_feeder import check_variable_and_dtype from paddle.framework import LayerHelper, in_dynamic_mode __all__ = [] MODEL_PARALLEL_RNG = 'model_parallel_rng' # This file is inspired by Megatron to control random states for MP: # https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/mpu/random.py class RNGStatesTracker: """ Tracker the RNG states. """ def __init__(self): # Map from name to the rng state. self.states_ = {} self.seeds_ = set() def reset(self): self.states_ = {} self.seeds_ = set() def add(self, name, seed): if seed in self.seeds_: raise ValueError(f'seed {seed} already exists') self.seeds_.add(seed) if name in self.states_: raise ValueError(f'state {name} already exists') orig_rng_state = paddle.get_rng_state() paddle.seed(seed) self.states_[name] = paddle.get_rng_state() paddle.set_rng_state(orig_rng_state) def get_states_tracker(self): states = {} for name in self.states_: states[name] = self.states_[name] return states def set_states_tracker(self, states): self.states_ = states @contextlib.contextmanager def rng_state(self, name=MODEL_PARALLEL_RNG): if name not in self.states_: raise ValueError(f'state {name} does not exist') orig_rng_state = paddle.get_rng_state() paddle.set_rng_state(self.states_[name]) try: yield finally: self.states_[name] = paddle.get_rng_state() paddle.set_rng_state(orig_rng_state) RNG_STATE_TRACKER = RNGStatesTracker() def get_rng_state_tracker(): return RNG_STATE_TRACKER def model_parallel_random_seed(seed=None): from paddle.distributed import fleet hcg = fleet.get_hybrid_communicate_group() mp_rank = hcg.get_model_parallel_rank() mp_size = hcg.get_model_parallel_world_size() pp_rank = hcg.get_stage_id() pp_size = hcg.get_pipe_parallel_world_size() if seed: global_seed = seed # dp/sharding seed is same local_seed = seed + 1 + mp_rank * pp_size + pp_rank else: global_seed = np.random.randint(0, 10000) local_seed = global_seed + 1 + mp_rank * pp_size + pp_rank RNG_STATE_TRACKER.reset() RNG_STATE_TRACKER.add(MODEL_PARALLEL_RNG, local_seed) paddle.seed(global_seed) def determinate_seed(rng_name): assert rng_name is not None and rng_name != "" helper = LayerHelper('seed', **locals()) out = helper.create_variable_for_type_inference(dtype=paddle.int32) # set force_cpu to reduce sync copy from CPU->GPU->CPU, and reduce pipeline hang helper.append_op( type='seed', outputs={'Out': out}, attrs={'deterministic': True, 'rng_name': rng_name, 'force_cpu': True}, ) return out def dropout( x, p=0.5, axis=None, rng_name=None, training=True, mode="upscale_in_train", name=None, ): """ Dropout is a regularization technique for reducing overfitting by preventing neuron co-adaption during training. The dropout operator randomly sets the outputs of some units to zero, while upscale others according to the given dropout probability. Args: x (Tensor): The input tensor. The data type is float32 or float64. p (float|int): Probability of setting units to zero. Default 0.5. axis (int|list|tuple): The axis along which the dropout is performed. Default None. rng_name (str): The random seed generator name, which used to obtain deterministic results. training (bool): A flag indicating whether it is in train phrase or not. Default True. mode(str): ['upscale_in_train'(default) | 'downscale_in_infer']. 1. upscale_in_train(default), upscale the output at training time - train: out = input * mask / ( 1.0 - dropout_prob ) - inference: out = input 2. downscale_in_infer, downscale the output at inference - train: out = input * mask - inference: out = input * (1.0 - dropout_prob) name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Tensor representing the dropout, has same shape and data type as `x` . Examples: We use ``p=0.5`` in the following description for simplicity. 1. When ``axis=None`` , this is commonly used dropout, which dropout each element of x randomly. .. code-block:: text Let's see a simple case when x is a 2d tensor with shape 2*3: [[1 2 3] [4 5 6]] we generate mask with the same shape as x, which is 2*3. The value of mask is sampled from a Bernoulli distribution randomly. For example, we may get such mask: [[0 1 0] [1 0 1]] So the output is obtained from elementwise multiply of x and mask: [[0 2 0] [4 0 6]] Using default setting, i.e. ``mode='upscale_in_train'`` , if in training phase, the final upscale output is: [[0 4 0 ] [8 0 12]] if in test phase, the output is the same as input: [[1 2 3] [4 5 6]] we can also set ``mode='downscale_in_infer'`` , then if in training phase, the final output is: [[0 2 0] [4 0 6]] if in test phase, the scale output is: [[0.5 1. 1.5] [2. 2.5 3. ]] """ if rng_name is None: return paddle.nn.functional.dropout(x, p, axis, training, mode, name) if not isinstance(p, (float, int, Variable)): raise TypeError("p argument should be a number(int|float) or Variable") # fast return for p == 0 if isinstance(p, (int, float)) and p == 0: return x assert 0 <= p <= 1, ValueError("p argument should between 0 and 1") assert mode in ('downscale_in_infer', 'upscale_in_train'), ValueError( "mode argument should be 'downscale_in_infer' or 'upscale_in_train'" ) assert axis is None, TypeError( "unsupport axis when using random seed generator" ) mode = ( 'downgrade_in_infer' if mode == 'downscale_in_infer' else mode ) # semantic transfer # dygraph using tracker, doesn't need determinate seed if in_dynamic_mode(): out, mask = _legacy_C_ops.dropout( x, 'dropout_prob', p, 'is_test', not training, 'fix_seed', False, 'seed', 0, 'dropout_implementation', mode, ) return out else: seed = determinate_seed(rng_name) if isinstance(p, Variable) and not p.shape != [1]: raise TypeError( "Required p.shape == [1] if type(p) is Variable, but received p.shape = {}".format( p.shape ) ) helper = LayerHelper('dropout', **locals()) check_variable_and_dtype( x, 'x', ['float16', 'float32', 'float64'], 'dropout' ) out = helper.create_variable_for_type_inference(dtype=x.dtype) mask = helper.create_variable_for_type_inference( dtype=core.VarDesc.VarType.UINT8, stop_gradient=True ) helper.append_op( type='dropout', inputs={'X': [x], 'Seed': seed}, outputs={'Out': [out], 'Mask': [mask]}, attrs={ 'dropout_prob': p, 'is_test': not training, 'dropout_implementation': mode, }, ) return out