// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/framework/details/broadcast_op_handle.h" #include "paddle/fluid/framework/details/container_cast.h" #include "paddle/fluid/framework/details/variable_visitor.h" namespace paddle { namespace framework { namespace details { BroadcastOpHandle::BroadcastOpHandle(const std::vector &local_scopes, const std::vector &places) : local_scopes_(local_scopes), places_(places) {} void BroadcastOpHandle::RunImpl() { // the input and output may have dummy var. VarHandle *in_var_handle; { auto in_var_handles = DynamicCast(inputs_); PADDLE_ENFORCE_EQ(in_var_handles.size(), 1, "The number of input should be one."); in_var_handle = in_var_handles[0]; } auto out_var_handles = DynamicCast(outputs_); PADDLE_ENFORCE_EQ( out_var_handles.size(), places_.size(), "The number of output should equal to the number of places."); // Wait input done, this Wait is asynchronous operation platform::Place // &in_place; WaitInputVarGenerated(*in_var_handle); auto *in_var = local_scopes_.at(in_var_handle->scope_idx_) ->FindVar(in_var_handle->name_); PADDLE_ENFORCE_NOT_NULL(in_var); Tensor &in_tensor = VariableVisitor::GetMutableTensor(in_var); for (auto *out : out_var_handles) { if (*out == *in_var_handle) { continue; } auto &out_p = out->place_; auto *out_var = local_scopes_.at(out->scope_idx_)->FindVar(out->name_); PADDLE_ENFORCE_EQ(out_p.which(), in_var_handle->place_.which(), "Places must be all on CPU or all on CUDA."); VariableVisitor::ShareDimsAndLoD(*in_var, out_var); VariableVisitor::GetMutableTensor(out_var) .Resize(in_tensor.dims()) .mutable_data(out_p, in_tensor.type()); auto dev_ctx = dev_ctxes_[out_p]; RunAndRecordEvent(out_p, [in_tensor, out_var, dev_ctx, out_p] { paddle::framework::TensorCopy( in_tensor, out_p, *(dev_ctx), &VariableVisitor::GetMutableTensor(out_var)); }); } } void BroadcastOpHandle::WaitInputVarGenerated(const VarHandle &in_var) { if (in_var.generated_op_) { for (auto &pair : dev_ctxes_) { in_var.generated_op_->Wait(pair.second); } } } std::string BroadcastOpHandle::Name() const { return "broadcast"; } } // namespace details } // namespace framework } // namespace paddle