# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unlessf required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import numpy import warnings from ..layer_helper import LayerHelper from ..param_attr import ParamAttr from ..initializer import Initializer from ..framework import ( _current_expected_place, convert_np_dtype_to_dtype_, _non_static_mode, _varbase_creator, device_guard, _in_legacy_dygraph, in_dygraph_mode, _get_paddle_place, ) from ..framework import Variable from ..initializer import Constant from ..core import VarDesc from .. import core from .layer_function_generator import templatedoc from . import utils from ..data_feeder import ( check_variable_and_dtype, check_type, check_dtype, convert_dtype, ) from paddle.utils import deprecated from .utils import check_shape from paddle import _C_ops, _legacy_C_ops __all__ = [ 'create_tensor', 'create_global_var', 'cast', 'tensor_array_to_tensor', 'concat', 'sums', 'assign', 'fill_constant_batch_size_like', 'fill_constant', 'argmin', 'argmax', 'zeros', ] def create_tensor(dtype, name=None, persistable=False): """ Create a variable, which will hold a Tensor with data type dtype. Args: dtype(string|numpy.dtype): the data type of Tensor to be created, the data type is bool, float16, float32, float64, int8, int16, int32 and int64. name(string, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` persistable(bool): Set the persistable flag of the create tensor. default value is False. Returns: Variable: The tensor to be created according to dtype. Examples: .. code-block:: python import paddle.fluid as fluid tensor = fluid.layers.create_tensor(dtype='float32') """ check_dtype( dtype, 'dtype', [ 'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int32', 'int64', ], 'create_tensor', ) helper = LayerHelper("create_tensor", **locals()) return helper.create_variable( name=helper.name, dtype=dtype, persistable=persistable ) def create_global_var( shape, value, dtype, persistable=False, force_cpu=False, name=None ): """ This function creates a new tensor variable with value in the global block(block 0). Parameters: shape (list[int]|tuple[int]): Shape of the variable value (float): The value of the variable. The new created variable will be filled with it. dtype (str): Data type of the variable persistable (bool, optional): If this variable is persistable. Default: False force_cpu (bool, optional): Force this variable to be on CPU. Default: False name (str, optional): For detailed information, please refer to :ref:`api_guide_Name` . Usually name is no need to set and None by default. Returns: Variable: The created Variable Examples: .. code-block:: python import paddle paddle.enable_static() var = paddle.static.create_global_var(shape=[2,3], value=1.0, dtype='float32', persistable=True, force_cpu=True, name='new_var') """ check_type( shape, 'shape', (list, tuple, numpy.ndarray), 'create_global_var' ) for item in shape: check_type( item, 'item of shape', ( int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32, numpy.int64, ), 'create_global_var', ) check_dtype( dtype, 'dtype', [ 'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32', 'int64', 'uint8', 'uint16', ], 'create_global_var', ) helper = LayerHelper("global_var", **locals()) var = helper.create_global_variable( dtype=dtype, shape=shape, persistable=persistable, name=name, stop_gradient=True, ) helper.set_variable_initializer( var, initializer=Constant(value=float(value), force_cpu=force_cpu) ) return var def cast(x, dtype): """ This OP takes in the Tensor :attr:`x` with :attr:`x.dtype` and casts it to the output with :attr:`dtype`. It's meaningless if the output dtype equals the input dtype, but it's fine if you do so. Args: x(Tensor): An input N-D Tensor with data type bool, float16, float32, float64, int32, int64, uint8. dtype(np.dtype|str): Data type of the output: bool, float16, float32, float64, int8, int32, int64, uint8. Returns: Tensor: A Tensor with the same shape as input's. Examples: .. code-block:: python import paddle x = paddle.to_tensor([2, 3, 4], 'float64') y = paddle.cast(x, 'uint8') """ if in_dygraph_mode(): if not isinstance(dtype, core.VarDesc.VarType): dtype = convert_np_dtype_to_dtype_(dtype) return _C_ops.cast(x, dtype) if _non_static_mode(): if not isinstance(dtype, core.VarDesc.VarType): dtype = convert_np_dtype_to_dtype_(dtype) out = _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype) return out check_variable_and_dtype( x, 'x', [ 'bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64', 'uint8', 'uint16', ], 'cast', ) check_dtype( dtype, 'dtype', [ 'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32', 'int64', 'uint8', 'uint16', ], 'cast', ) helper = LayerHelper('cast', **locals()) out = helper.create_variable_for_type_inference( dtype=dtype, stop_gradient=x.stop_gradient ) helper.append_op( type='cast', inputs={'X': [x]}, outputs={'Out': [out]}, attrs={'in_dtype': x.dtype, 'out_dtype': out.dtype}, ) return out def concat(input, axis=0, name=None): """ This OP concatenates the input along the axis. Args: input(list|tuple|Tensor): ``input`` can be Tensor, Tensor list or Tensor tuple which is with data type bool, float16, float32, float64, int32, int64. All the Tensors in ``input`` must have the same data type. axis(int|Tensor, optional): Specify the axis to operate on the input Tensors. It's a scalar with data type int or a Tensor with shape [1] and data type int32 or int64. The effective range is [-R, R), where R is Rank(x). When ``axis < 0``, it works the same way as ``axis+R``. Default is 0. name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: A Tensor with the same data type as ``input``. Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np in1 = np.array([[1, 2, 3], [4, 5, 6]]) in2 = np.array([[11, 12, 13], [14, 15, 16]]) in3 = np.array([[21, 22], [23, 24]]) with fluid.dygraph.guard(): x1 = fluid.dygraph.to_variable(in1) x2 = fluid.dygraph.to_variable(in2) x3 = fluid.dygraph.to_variable(in3) # When the axis is negative, the real axis is (axis + Rank(x)). # As follows, axis is -1, Rank(x) is 2, the real axis is 1 out1 = fluid.layers.concat(input=[x1, x2, x3], axis=-1) out2 = fluid.layers.concat(input=[x1, x2], axis=0) print(out1.numpy()) # [[ 1 2 3 11 12 13 21 22] # [ 4 5 6 14 15 16 23 24]] print(out2.numpy()) # [[ 1 2 3] # [ 4 5 6] # [11 12 13] # [14 15 16]] """ if in_dygraph_mode(): if isinstance(axis, Variable): axis = axis.numpy() axis = axis.item(0) if not isinstance(input, Variable): input = [t for t in input if t.shape.count(0) == 0] out = _C_ops.concat(input, axis) return out if _in_legacy_dygraph(): if isinstance(axis, Variable): axis = axis.numpy() axis = axis.item(0) if not isinstance(input, Variable): input = [t for t in input if t.shape.count(0) == 0] out = _varbase_creator() _legacy_C_ops.concat(input, out, 'axis', axis) return out check_type(input, 'input', (list, tuple, Variable), 'concat') if not isinstance(input, Variable): for id, x in enumerate(input): check_variable_and_dtype( x, 'input[' + str(id) + ']', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'], 'concat', ) if x.dtype != input[0].dtype: raise TypeError( "All the Tensors in the input must have the same data type." ) else: input = [input] check_type(axis, 'axis', (int, Variable), 'concat') if isinstance(axis, Variable): check_dtype( axis.dtype, 'axis', ['int32', 'int64'], 'concat', "The data type of axis must be int32 or int64 when axis is a Tensor", ) helper = LayerHelper('concat', **locals()) out = helper.create_variable_for_type_inference(dtype=helper.input_dtype()) if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY: # NOTE(liym27): Don't remove this if branch! # This feature is supported for Dynamic-to-Static, because after transformed, the type of inputs[0] # is LOD_TENSOR_ARRAY in some scenarios. And this feature can be used in static mode. assert len(input) == 1, ( "If the elements of 'input' in concat are Variable(LoDTensorArray), " "number of the elements must be 1, but received %s." % len(input) ) out_index = helper.create_variable_for_type_inference(dtype="int32") helper.append_op( type='tensor_array_to_tensor', inputs={'X': input[0]}, outputs={'Out': [out], 'OutIndex': [out_index]}, attrs={'axis': axis, 'use_stack': False}, ) else: inputs = {'X': input} attrs = {} if isinstance(axis, Variable): axis.stop_gradient = True attrs['axis'] = axis helper.append_op( type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs ) return out def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False): r""" This function concatenates or stacks all tensors in the input LoDTensorArray along the axis mentioned and returns that as the output. For Example: .. code-block:: text Case 1: Given: input.data = {[[0.6, 0.1, 0.3], [0.5, 0.3, 0.2]], [[1.3], [1.8]], [[2.3, 2.1], [2.5, 2.4]]} axis = 1, use_stack = False Then: output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1], [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]] output_index.data = [3, 1, 2] Case 2: Given: input.data = {[[0.6, 0.1], [0.5, 0.3]], [[0.3, 1.3], [0.2, 1.8]], [[2.3, 2.1], [2.5, 2.4]]} axis = 1, use_stack = True Then: output.data = [[[0.6, 0.1] [0.3, 1.3] [2.3, 2.1], [[0.5, 0.3] [0.2, 1.8] [2.5, 2.4]]] output_index.data = [2, 2, 2] Args: input(Variable): A LodTensorArray variable. axis(int): The axis along which the tensors in attr::`input` will be concatenated or stacked. name(str|None): A name for this layer(optional). If set None, the layer will be named automatically. use_stack(bool): Act as concat_op or stack_op. For stack mode, all tensors in the tensor array must have the same shape. Returns: Variable: The concatenated or stacked tensor variable. Variable: A 1-D tensor variable with int32 data type. The data in this \ tensor contains all input including tensors' sizes along the axis. Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32")) x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32")) i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0) array = fluid.layers.create_array(dtype='float32') fluid.layers.array_write(x0, i, array) fluid.layers.array_write(x1, i + 1, array) output, output_index = fluid.layers.tensor_array_to_tensor(input=array) """ if _non_static_mode(): assert isinstance( input, list ), "The 'input' in tensor_array_to_tensor must be list" from .nn import concat from ..dygraph import to_variable from paddle import stack op = stack if use_stack else concat res = op(input, axis=axis) sizes = to_variable( numpy.array(list(map(lambda x: int(x.shape[axis]), input))) ) return res, sizes check_type(input, 'input', (list, Variable), 'tensor_array_to_tensor') if isinstance(input, list): for i, input_x in enumerate(input): check_type( input_x, 'input[' + str(i) + ']', Variable, 'tensor_array_to_tensor', ) helper = LayerHelper('tensor_array_to_tensor', **locals()) out = helper.create_variable_for_type_inference(dtype=helper.input_dtype()) out_index = helper.create_variable_for_type_inference(dtype="int32") helper.append_op( type='tensor_array_to_tensor', inputs={'X': input}, outputs={'Out': [out], 'OutIndex': [out_index]}, attrs={'axis': axis, 'use_stack': use_stack}, ) return out, out_index def sums(input, out=None): r""" This function computes the sum of multiple input Tensors elementwisely. - Case 1, sum of 3 Tensors .. code-block:: text # Input Tensors x0.shape = [2, 3] x0.data = [[1., 2., 3.], [4., 5., 6.]] x1.shape = [2, 3] x1.data = [[10., 20., 30.], [40., 50., 60.]] x2.shape = [2, 3] x2.data = [[100., 200., 300.], [400., 500., 600.]] # Output Tensor out.shape = [2, 3] out.data = [[111., 222., 333.], [444., 555., 666.]] Args: input (list): A list of Variables which hold input Tensors with the same data type and shape. Optional data types are: float32, float64, int32, int64. out (Variable, optional): Output Tensor. It can be any existing Variable. The default value is None, then a new Variable will be created and returned. Returns: Variable: The sum of inputs. The shape and data type is the same with input. \ If :code:`out` is not None, the returned value is :code:`out` . Examples: .. code-block:: python import paddle.fluid as fluid x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1) x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2) x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3) x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0) # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]]) sum0 = fluid.layers.sums(input=[x0, x1, x2]) # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]]) sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3) """ check_type(input, 'input', (Variable, tuple, list), 'sums') if isinstance(input, list) or isinstance(input, tuple): for input_section in input: check_variable_and_dtype( input_section, "input", ['float16', 'float32', 'float64', 'int32', 'int64'], 'sums', ) else: check_variable_and_dtype( input, "input", ['float16', 'float32', 'float64', 'int32', 'int64'], 'sums', ) helper = LayerHelper('sum', **locals()) if out is None: out = helper.create_variable_for_type_inference( dtype=helper.input_dtype() ) else: check_variable_and_dtype( out, "out", ['float32', 'float64', 'int32', 'int64'], 'sums' ) helper.append_op( type='sum', inputs={'X': input}, outputs={'Out': out}, attrs={'use_mkldnn': False}, ) return out def assign(input, output=None): """ The OP copies the :attr:`input` to the :attr:`output`. Parameters: input (Tensor|numpy.ndarray|list|tuple|scalar): A tensor, numpy ndarray, tuple/list of scalar, or scalar. Its data type supports float16, float32, float64, int32, int64, and bool. Note: the float64 data will be converted to float32 because of current platform protobuf data limitation. output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will be created as :attr:`output`. Default: None. Returns: Tensor: A tensor with the same shape, data type and value as :attr:`input`. Examples: .. code-block:: python import paddle import numpy as np data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]] array = np.array([[1, 1], [3, 4], [1, 3]]).astype(np.int64) result1 = paddle.zeros(shape=[3, 3], dtype='float32') paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]] result2 = paddle.assign(data) # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]] result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]] """ helper = LayerHelper('assign', **locals()) check_type( input, 'input', (Variable, numpy.ndarray, list, tuple, float, int, bool), 'assign', ) is_inplace = True if output is not None else False if numpy.isscalar(input) and not isinstance(input, str): input = numpy.array([input]) elif isinstance(input, (list, tuple)): input = numpy.array(input) # NOTE(Aurelius84): Why we judge core.VarBase? # In case of @to_static, a VarBase can be as input of `assign`, # but _non_static_mode()==False under @to_static, which means # isinstance(VarBase, Variable) == False. It will cause return None # after this api. if isinstance(input, (Variable, core.VarBase)): if _non_static_mode(): if in_dygraph_mode() and output is None: output = _C_ops.assign(input) elif in_dygraph_mode() and output is not None: _C_ops.assign_out_(input, output) else: if output is None: if _in_legacy_dygraph(): output = core.VarBase() else: output = core.eager.Tensor() _legacy_C_ops.assign(input, output) else: check_dtype( input.dtype, 'input', [ 'float16', 'uint16', 'float32', 'float64', 'int32', 'int64', 'uint8', 'bool', ], 'assign', '(When the type of input in assign is Variable.)', ) if output is None: output = helper.create_variable_for_type_inference( dtype=input.dtype ) helper.append_op( type='assign', inputs={'X': [input]}, outputs={'Out': [output]} ) elif isinstance(input, numpy.ndarray): # Not support [var, var, ...] currently. if len(input.shape) > 0 and any(isinstance(x, Variable) for x in input): raise TypeError( "Required type(input) numpy.ndarray, but found `list(Variable)` in input." ) dtype = convert_np_dtype_to_dtype_(input.dtype) if dtype == VarDesc.VarType.FP64: # Setting FP64 numpy data is not supported in Paddle, so we # use FP32 here warnings.warn( "paddle.assign doesn't support float64 input now due " "to current platform protobuf data limitation, we convert " "it to float32" ) dtype = VarDesc.VarType.FP32 if dtype == VarDesc.VarType.BOOL: value_name = "bool_values" values = [int(v) for v in input.flat] elif dtype == VarDesc.VarType.FP32: value_name = "fp32_values" values = [float(v) for v in input.flat] elif dtype == VarDesc.VarType.INT32: value_name = "int32_values" values = [int(v) for v in input.flat] elif dtype == VarDesc.VarType.INT64: value_name = "int64_values" values = [int(v) for v in input.flat] else: raise TypeError( "When the type of 'input' in assign is numpy.ndarray, " "the data type of 'input' must be bool, float32, int32 or int64, but " "received %s." % convert_dtype(dtype) ) if input.size > 1024 * 1024: raise ValueError( "The size of input is too big. Please consider " "saving it to file and 'load_op' to load it" ) if in_dygraph_mode(): if output is None: output = zeros(list(input.shape), dtype) _C_ops.assign_value_( output, list(input.shape), dtype, values, _current_expected_place(), ) elif _in_legacy_dygraph(): if output is None: output = core.VarBase() _legacy_C_ops.assign_value( output, 'shape', list(input.shape), 'dtype', dtype, value_name, values, ) else: if output is None: output = helper.create_variable_for_type_inference( dtype=input.dtype ) helper.append_op( type='assign_value', outputs={'Out': [output]}, attrs={ 'dtype': dtype, 'shape': list(input.shape), value_name: values, }, ) if is_inplace and _non_static_mode(): output._bump_inplace_version() return output def fill_constant(shape, dtype, value, force_cpu=False, out=None, name=None): """ This OP creates a Tensor with specified `shape` and `dtype`, and initializes it with a constant specified by `value`. The attribute `stop_gradient` of the created Tensor is set to True. Args: shape(list|tuple|Tensor): Shape of the output Tensor, the data type of ``shape`` is int32 or int64. If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. If ``shape`` is an Tensor, it should be an 1-D Tensor with date type int32 or int64. dtype(np.dtype|str): Data type of the output Tensor which can be float16, float32, float64, uint8, int16, int32, int64. value(bool|float|int|Tensor): The constant value used to initialize the Tensor to be created. If ``value`` is an Tensor, it should be an 1-D Tensor. force_cpu(bool, optional): data should be on CPU if it's true, default value is False. out(Tensor, optional): Optional output which can be any created Tensor that meets the requirements to store the result of operation. if ``out`` is None, a new Tensor will be create to store the result. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: Tensor which is created according to shape and dtype. Examples: .. code-block:: python import paddle.fluid as fluid # attr shape is a list which doesn't contain Tensor. data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]] data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1) # data1=[[5], [5]] data2=[[5], [5]] # attr shape is a list which contains Tensor. positive_2 = fluid.layers.fill_constant([1], "int32", 2) data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[[1.5, 1.5]] # attr shape is a Tensor. shape = fluid.layers.fill_constant([2], "int32", 2) # shape=[2,2] data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]] # attr value is a Tensor. val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0] data5 = fluid.layers.fill_constant(shape=[2,1], value=val, dtype='float32') #data5=[[2.0],[2.0]] """ attrs = {'force_cpu': force_cpu} dtype = convert_dtype(dtype) if not isinstance(value, Variable): if dtype in ['uint8', 'int16', 'int32', 'int64']: attrs['str_value'] = str(int(value)) attrs['value'] = int(value) else: attrs['str_value'] = str(float(value)) attrs['value'] = float(value) if in_dygraph_mode(): place = _current_expected_place() if force_cpu: place = core.CPUPlace() if isinstance(shape, (list, tuple)): shape = utils.convert_shape_to_list(shape) if not isinstance(dtype, core.VarDesc.VarType): dtype = convert_np_dtype_to_dtype_(dtype) if out is None: out = _C_ops.full(shape, float(value), dtype, place) out.stop_gradient = True return out if out is not None: # final state mode is support out is not None. _C_ops.full_(out, shape, float(value), dtype, place) out.stop_gradient = True return out if _in_legacy_dygraph(): shape = utils.convert_shape_to_list(shape) if out is None: out = _varbase_creator(dtype=dtype) if isinstance(value, Variable): if dtype in ['uint8', 'int16', 'int32', 'int64']: attrs['str_value'] = str(int(value.numpy().item(0))) else: attrs['str_value'] = str(float(value.numpy().item(0))) _legacy_C_ops.fill_constant( out, 'value', float(value), 'force_cpu', force_cpu, 'dtype', out.dtype, 'str_value', attrs['str_value'], 'shape', shape, ) out.stop_gradient = True return out helper = LayerHelper("fill_constant", **locals()) inputs = {} if isinstance(value, Variable): if convert_dtype(value.dtype) != dtype: value = cast(value, dtype) inputs['ValueTensor'] = value check_shape(shape) check_dtype( dtype, 'dtype', [ 'bool', 'float16', 'float32', 'float64', 'uint8', 'int16', 'int32', 'int64', 'complex64', 'complex128', ], 'fill_constant', ) check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant') if out is not None: check_variable_and_dtype( out, 'out', [convert_dtype(dtype)], 'fill_constant' ) helper = LayerHelper("fill_constant", **locals()) utils.get_shape_tensor_inputs( inputs=inputs, attrs=attrs, shape=shape, op_type='fill_constant' ) if out is None: out = helper.create_variable_for_type_inference(dtype=dtype) attrs['dtype'] = out.dtype helper.append_op( type='fill_constant', inputs=inputs, outputs={'Out': [out]}, attrs=attrs, stop_gradient=True, ) out.stop_gradient = True return out @deprecated(since='1.8.0', update_to="paddle.fluid.layers.fill_constant") @templatedoc() def fill_constant_batch_size_like( input, shape, dtype, value, input_dim_idx=0, output_dim_idx=0, force_cpu=False, ): """ This OP creates a Tesnor according the shape and dtype, and initializes the Tensor with the constants provided in ``value``. When the input is LoDTensor and the input_dim_idx is 0, the output_dim_idx dimension is set to the value of the batch_size input by the input, the Stop_gradient attribute of the created Tensor is False by default. Args: input(Variable): Tensor which data type is float32, float64, int32 and int64. shape(list): The shape of Tensor to be created, Tensor's shape may be changed according the input. dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which can be float32, float64, int32, int64. value(float|int): The constant value used to initialize the Tensor to be created. input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx dimension of the created Tensor is set to the batch_size value of input. The default value is 0. output_dim_idx(int): Used to specify which dimension of Tensor is created to be set the value of batch_size of input Tensor. The default value is 0. force_cpu(bool): data should be on CPU if it's true, default value is False. Returns: Variable: Tensor which will be created according to dtype. Examples: .. code-block:: python import paddle.fluid as fluid like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]] data = fluid.layers.fill_constant_batch_size_like( input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0] """ if in_dygraph_mode(): if not isinstance(dtype, core.VarDesc.VarType): dtype = convert_np_dtype_to_dtype_(dtype) place = _current_expected_place() if force_cpu: place = core.CPUPlace() out = _C_ops.full_batch_size_like( input, shape, dtype, value, input_dim_idx, output_dim_idx, place ) out.stop_gradient = True return out helper = LayerHelper("fill_constant_batch_size_like", **locals()) out = helper.create_variable_for_type_inference(dtype=dtype) attrs = { 'shape': shape, 'dtype': out.dtype, 'value': float(value), 'input_dim_idx': input_dim_idx, 'output_dim_idx': output_dim_idx, 'force_cpu': force_cpu, } if convert_dtype(dtype) in ['int64', 'int32']: attrs['str_value'] = str(int(value)) else: attrs['str_value'] = str(float(value)) helper.append_op( type='fill_constant_batch_size_like', inputs={'Input': input}, outputs={'Out': [out]}, attrs=attrs, ) out.stop_gradient = True return out def argmin(x, axis=0): """ :alias_main: paddle.argmin :alias: paddle.argmin,paddle.tensor.argmin,paddle.tensor.search.argmin :old_api: paddle.fluid.layers.argmin **argmin** This OP computes the indices of the min elements of the input tensor's element along the provided axis. Args: x(Variable): An input N-D Tensor with type float32, float64, int16, int32, int64, uint8. axis(int, optional): Axis to compute indices along. The effective range is [-R, R), where R is Rank(x). when axis<0, it works the same way as axis+R. Default is 0. Returns: Variable: A Tensor with data type int64. Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np in1 = np.array([[[5,8,9,5], [0,0,1,7], [6,9,2,4]], [[5,2,4,2], [4,7,7,9], [1,7,0,6]]]) with fluid.dygraph.guard(): x = fluid.dygraph.to_variable(in1) out1 = fluid.layers.argmin(x=x, axis=-1) out2 = fluid.layers.argmin(x=x, axis=0) out3 = fluid.layers.argmin(x=x, axis=1) out4 = fluid.layers.argmin(x=x, axis=2) print(out1.numpy()) # [[0 0 2] # [1 0 2]] print(out2.numpy()) # [[0 1 1 1] # [0 0 0 0] # [1 1 1 0]] print(out3.numpy()) # [[1 1 1 2] # [2 0 2 0]] print(out4.numpy()) # [[0 0 2] # [1 0 2]] """ check_variable_and_dtype( x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'], 'argmin', ) helper = LayerHelper("arg_min", **locals()) out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64) helper.append_op( type='arg_min', inputs={'X': x}, outputs={'Out': [out]}, attrs={'axis': axis}, ) out.stop_gradient = True return out def argmax(x, axis=0): """ **argmax** This OP computes the indices of the max elements of the input tensor's element along the provided axis. Args: x(Variable): An input N-D Tensor with type float32, float64, int16, int32, int64, uint8. axis(int, optional): Axis to compute indices along. The effective range is [-R, R), where R is Rank(x). when axis<0, it works the same way as axis+R. Default is 0. Returns: Variable: A Tensor with data type int64. Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np in1 = np.array([[[5,8,9,5], [0,0,1,7], [6,9,2,4]], [[5,2,4,2], [4,7,7,9], [1,7,0,6]]]) with fluid.dygraph.guard(): x = fluid.dygraph.to_variable(in1) out1 = fluid.layers.argmax(x=x, axis=-1) out2 = fluid.layers.argmax(x=x, axis=0) out3 = fluid.layers.argmax(x=x, axis=1) out4 = fluid.layers.argmax(x=x, axis=2) print(out1.numpy()) # [[2 3 1] # [0 3 1]] print(out2.numpy()) # [[0 0 0 0] # [1 1 1 1] # [0 0 0 1]] print(out3.numpy()) # [[2 2 0 1] # [0 1 1 1]] print(out4.numpy()) # [[2 3 1] # [0 3 1]] """ check_variable_and_dtype( x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'], 'argmax', ) helper = LayerHelper("arg_max", **locals()) out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64) helper.append_op( type='arg_max', inputs={'X': x}, outputs={'Out': [out]}, attrs={'axis': axis}, ) out.stop_gradient = True return out def zeros(shape, dtype, force_cpu=False, name=None): """ The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0. Its :attr:`stop_gradient` will be set to True to stop gradient computation. Parameters: shape(tuple|list|Tensor): Shape of output Tensor, the data type of ``shape`` is int32 or int64. dtype (np.dtype|str): Data type of output Tensor, it supports bool, float16, float32, float64, int32 and int64. force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory. If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory. Default: False. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0. Examples: .. code-block:: python import paddle.fluid as fluid data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]] # shape is a Tensor shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2) data1 = fluid.layers.zeros(shape=shape, dtype='int32') #[[0, 0], [0, 0]] """ return fill_constant(value=0.0, **locals())