// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/adadelta_kernel.h" #include "paddle/phi/backends/xpu/enforce_xpu.h" #include "paddle/phi/core/kernel_registry.h" namespace phi { template void AdadeltaKernel(const Context& dev_ctx, const DenseTensor& param, const DenseTensor& grad, const DenseTensor& avg_squared_grad, const DenseTensor& avg_squared_update, const DenseTensor& learning_rate, const paddle::optional& master_param, float rho, float epsilon, bool multi_precision, DenseTensor* param_out, DenseTensor* avg_squared_grad_out, DenseTensor* avg_squared_update_out, DenseTensor* master_param_outs) { dev_ctx.template Alloc(param_out); dev_ctx.template Alloc(avg_squared_grad_out); dev_ctx.template Alloc(avg_squared_update_out); int r = xpu::adadelta(dev_ctx.x_context(), param.data(), grad.data(), avg_squared_grad.data(), avg_squared_update.data(), param_out->data(), avg_squared_grad_out->data(), avg_squared_update_out->data(), param.numel(), rho, epsilon); PADDLE_ENFORCE_XDNN_SUCCESS(r, "adadelta"); } } // namespace phi PD_REGISTER_KERNEL(adadelta, XPU, ALL_LAYOUT, phi::AdadeltaKernel, float) {}