/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include #include #include "paddle/fluid/framework/ir/fusion_group/operation.h" #include "paddle/fluid/framework/ir/node.h" #include "paddle/fluid/framework/ir/subgraph_detector.h" namespace paddle { namespace framework { namespace ir { namespace fusion_group { class SubGraph { public: SubGraph() = default; explicit SubGraph(int type) : type_(type) {} SubGraph(int type, std::string func_name, bool save_intermediate_out, const std::unordered_set& nodes_set) : type_(type), func_name_(func_name), save_intermediate_out_(save_intermediate_out) { for (auto* n : nodes_set) { nodes_set_.insert(n); if (n && n->IsOp() && n->Op()) { // If the node is an op node, then add its input/output var nodes // into the subgraph. for (auto* in : n->inputs) { nodes_set_.insert(in); } for (auto* out : n->outputs) { nodes_set_.insert(out); } } } ExtractDataType(); } bool IsValid(int min_subgraph_size) { int num_operations = GetNumOperations(); if (num_operations < min_subgraph_size) { VLOG(2) << "There are only " << num_operations << " operations in the subgraph. Expected at least " << min_subgraph_size; return false; } return ExtractDataType(); } int GetType() const { return type_; } std::string GetDataType() const { return data_type_; } void SetFuncName(std::string func_name) { func_name_ = func_name; } std::string GetFuncName() const { return func_name_; } const std::unordered_set& Nodes() const { return nodes_set_; } const std::vector& SortedNodes() { if (!is_sorted_) { TopologicalSort(); } return sorted_nodes_; } size_t GetNumNodes() { return nodes_set_.size(); } bool Has(Node* n) { return nodes_set_.find(n) != nodes_set_.end(); } int GetNumOperations() { int num_operations = 0; for (auto* n : nodes_set_) { if (n && n->IsOp() && n->Op()) { num_operations++; } } return num_operations; } std::vector GetInputVarNodes() { // The order of input nodes should be consistent anywhere. std::vector input_vars; for (auto* n : SortedNodes()) { if (n && n->IsVar() && n->Var()) { bool is_found = true; // When the inputs size is 0, it is also considered the input var of // subgraph. if (n->inputs.size() == 0U) { is_found = false; } // Normally a var node has only one input op node. for (auto* in : n->inputs) { if (!Has(in)) { is_found = false; } } if (!is_found) { input_vars.push_back(n); } } } return input_vars; } std::vector GetOutputVarNodes() { // The order of output nodes should be consistant anywhere.. std::vector output_vars_all; for (auto* n : SortedNodes()) { if (n && n->IsVar() && n->Var()) { // If the var_node is the output of some op_node in the subgraph, it // is considered the output var node of the subgraph. bool is_found = false; for (auto* in : n->inputs) { if (Has(in)) { is_found = true; } } if (is_found) { output_vars_all.push_back(n); } } } if (save_intermediate_out_) { return output_vars_all; } std::vector output_vars_outside; for (auto* n : output_vars_all) { // If one of the var_node's outputs is the input of some operator // outside the subgraph, it is considered the output var node of the // subgraph. bool is_found = true; if (n->outputs.size() == 0U) { is_found = false; } for (auto* out : n->outputs) { if (!Has(out)) { is_found = false; } } if (!is_found) { output_vars_outside.push_back(n); } } return output_vars_outside; } private: bool ExtractDataType() { bool is_first = true; proto::VarType::Type data_type = proto::VarType::FP32; for (auto* n : nodes_set_) { if (n && n->IsVar() && n->Var()) { if (n->Var()->GetType() != proto::VarType::LOD_TENSOR) { // All var node in a subgraph should hold a LoDTensor. return false; } if (is_first) { data_type = n->Var()->GetDataType(); is_first = false; } else if (n->Var()->GetDataType() != data_type) { // DataType of VarDesc in a subgraph is not the same. return false; } } } if (data_type == proto::VarType::FP32) { data_type_ = "float"; } else if (data_type == proto::VarType::FP64) { data_type_ = "double"; } else if (data_type == proto::VarType::FP16) { data_type_ = "float16"; } else { VLOG(2) << "Only support fp32, fp64 and fp16 in fusion_group."; return false; } return true; } void TopologicalSort() { if (!is_sorted_) { std::unordered_map> inputs_map; std::unordered_map> outputs_map; for (auto* n : nodes_set_) { inputs_map[n] = n->inputs; outputs_map[n] = n->outputs; } for (auto* n : nodes_set_) { if (n && n->IsVar() && n->Var()) { // Set the input of subgraph's input var node to null. std::vector inputs; for (auto* in : n->inputs) { if (Has(in)) { inputs.push_back(in); } } // Set the output of subgraph's output var node to null. std::vector outputs; for (auto* out : n->outputs) { if (Has(out)) { outputs.push_back(out); } } n->inputs = inputs; n->outputs = outputs; } } // Collect the start points of the subgraph. std::vector start_points; for (auto* n : nodes_set_) { if (n->inputs.empty()) { start_points.push_back(n); } } // Sort the subgraph. NodesTSIterator x(start_points); for (auto& n : iterator_range( NodesTSIterator(start_points), NodesTSIterator())) { sorted_nodes_.push_back(&n); } // Reset the inputs, outputs. for (auto* n : nodes_set_) { n->inputs = inputs_map[n]; n->outputs = outputs_map[n]; } } is_sorted_ = true; } private: int type_{-1}; std::string data_type_; std::string func_name_; bool save_intermediate_out_{true}; std::unordered_set nodes_set_; bool is_sorted_{false}; std::vector sorted_nodes_; }; } // namespace fusion_group } // namespace ir } // namespace framework } // namespace paddle