# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from op_test import OpTest import paddle.fluid as fluid def bcast(x, target_tensor): x_dims = x.shape y_dims = target_tensor.shape bcast_dims = [] for i in range(len(x_dims)): bcast_dims.append(int(y_dims[i] / x_dims[i])) bcast_dims = np.array(bcast_dims).astype("int64") return bcast_dims class TestExpandAsOpRank1(OpTest): def setUp(self): self.op_type = "expand_as" x = np.random.rand(100).astype("float64") target_tensor = np.random.rand(200).astype("float64") self.inputs = {'X': x, 'target_tensor': target_tensor} self.attrs = {} bcast_dims = bcast(x, target_tensor) output = np.tile(self.inputs['X'], bcast_dims) self.outputs = {'Out': output} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') class TestExpandAsOpRank2(OpTest): def setUp(self): self.op_type = "expand_as" x = np.random.rand(2, 3).astype("float64") target_tensor = np.random.rand(4, 6).astype("float64") self.inputs = {'X': x, 'target_tensor': target_tensor} self.attrs = {} bcast_dims = bcast(x, target_tensor) output = np.tile(self.inputs['X'], bcast_dims) self.outputs = {'Out': output} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') class TestExpandAsOpRank3(OpTest): def setUp(self): self.op_type = "expand_as" x = np.random.rand(2, 3, 3).astype("float64") target_tensor = np.random.rand(4, 6, 6).astype("float64") self.inputs = {'X': x, 'target_tensor': target_tensor} self.attrs = {} bcast_dims = bcast(x, target_tensor) output = np.tile(self.inputs['X'], bcast_dims) self.outputs = {'Out': output} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') class TestExpandAsOpRank4(OpTest): def setUp(self): self.op_type = "expand_as" x = np.random.rand(1, 1, 3, 16).astype("float64") target_tensor = np.random.rand(4, 6, 6, 32).astype("float64") self.inputs = {'X': x, 'target_tensor': target_tensor} self.attrs = {} bcast_dims = bcast(x, target_tensor) output = np.tile(self.inputs['X'], bcast_dims) self.outputs = {'Out': output} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') # Test python API class TestExpandAPI(unittest.TestCase): def test_api(self): input1 = np.random.random([12, 14]).astype("float32") input2 = np.random.random([48, 14]).astype("float32") x = fluid.layers.data( name='x', shape=[12, 14], append_batch_size=False, dtype="float32") y = fluid.layers.data( name='target_tensor', shape=[48, 14], append_batch_size=False, dtype="float32") out_1 = fluid.layers.expand_as(x, target_tensor=y) exe = fluid.Executor(place=fluid.CPUPlace()) res_1 = exe.run(fluid.default_main_program(), feed={"x": input1, "target_tensor": input2}, fetch_list=[out_1]) assert np.array_equal(res_1[0], np.tile(input1, (4, 1))) if __name__ == "__main__": unittest.main()