Cuda¶
Dynamic Link Libs¶
hl_dso_loader.h¶
Functions
-
void
GetCublasDsoHandle(void **dso_handle)¶ load the DSO of CUBLAS
- Parameters
**dso_handle: dso handler
-
void
GetCudnnDsoHandle(void **dso_handle)¶ load the DSO of CUDNN
- Parameters
**dso_handle: dso handler
-
void
GetCudartDsoHandle(void **dso_handle)¶ load the DSO of CUDA Run Time
- Parameters
**dso_handle: dso handler
-
void
GetCurandDsoHandle(void **dso_handle)¶ load the DSO of CURAND
- Parameters
**dso_handle: dso handler
GPU Resources¶
hl_cuda.ph¶
Defines
-
HL_CUDA_PH_¶
Typedefs
-
typedef struct _global_device_resources *
global_device_resources¶
-
typedef struct _thread_device_resources *
thread_device_resources¶
-
typedef struct _hl_device_prop *
hl_device_prop¶
Functions
-
void
hl_create_thread_resources(int device, thread_device_resources device_res)¶ thread device resource allocation.
create cuda stream and cuda event, allocate gpu memory and host page-lock memory for threads.
- Parameters
device: device number.device_res: device properties.
-
void
hl_create_global_resources(hl_device_prop device_prop)¶ global device resource allocation.
create cuda stream, initialize cublas, curand and cudnn.
- Parameters
device_prop: device properties.
-
struct
_global_device_resources¶ global device resources.
- Parameters
*stream: device global stream.handle: devcie cublas handle.gen: device curand generator.cudnn_handle: cudnn handle.*gen_mutex: gen lock.
-
struct
_thread_device_resources¶
-
struct
_hl_device_prop¶
hl_cuda.h¶
Typedefs
-
typedef struct _hl_event_st *
hl_event_t¶ HPPL event.
Functions
-
int
hl_get_cuda_lib_version()¶ return cuda runtime api version.
-
void
hl_start()¶ HPPL strat(Initialize all GPU).
-
void
hl_specify_devices_start(int *device, int number)¶ HPPL start(Initialize the specific GPU).
- Parameters
device: device id(0, 1......). if device is NULL, will start all GPU.number: number of devices.
-
bool
hl_device_can_access_peer(int device, int peerDevice)¶ Queries if a device may directly access a peer device’s memory.
- Return
- Returns true if device is capable of directly accessing memory from peerDevice and false otherwise.
- Parameters
device: Device from which allocations on peerDevice are to be directly accessed.peerDevice: Device on which the allocations to be directly accessed by device reside.
-
void
hl_device_enable_peer_access(int peerDevice)¶ Enables direct access to memory allocations on a peer device.
- Parameters
peerDevice: Peer device to enable direct access to from the current device
-
void
hl_init(int device)¶ Init a work thread.
- Parameters
device: device id.
-
void
hl_fini()¶ Finish a work thread.
-
void
hl_set_sync_flag(bool flag)¶ Set synchronous/asynchronous flag.
- Note
- This setting is only valid for the current worker thread.
- Parameters
flag: true(default), set synchronous flag. false, set asynchronous flag.
-
bool
hl_get_sync_flag()¶ Get synchronous/asynchronous flag.
- Return
- Synchronous call true. Asynchronous call false.
-
int
hl_get_device_count()¶ Returns the number of compute-capable devices.
-
void
hl_set_device(int device)¶ Set device to be used.
- Parameters
device: device id.
-
int
hl_get_device()¶ Returns which device is currently being used.
- Return
- device device id.
-
void *
hl_malloc_device(size_t size)¶ Allocate device memory.
- Return
- dest_d pointer to device memory.
- Parameters
size: size in bytes to copy.
-
void
hl_free_mem_device(void *dest_d)¶ Free device memory.
- Parameters
dest_d: pointer to device memory.
-
void *
hl_malloc_host(size_t size)¶ Allocate host page-lock memory.
- Return
- dest_h pointer to host memory.
- Parameters
size: size in bytes to copy.
-
void
hl_free_mem_host(void *dest_h)¶ Free host page-lock memory.
- Parameters
dest_h: pointer to host memory.
-
void
hl_memcpy(void *dst, void *src, size_t size)¶ Copy data.
- Parameters
dst: dst memory address(host or device).src: src memory address(host or device).size: size in bytes to copy.
-
void
hl_memset_device(void *dest_d, int value, size_t size)¶ Set device memory to a value.
- Parameters
dest_d: pointer to device memory.value: value to set for each byte of specified memory.size: size in bytes to set.
-
void
hl_memcpy_host2device(void *dest_d, void *src_h, size_t size)¶ Copy host memory to device memory.
- Parameters
dest_d: dst memory address.src_h: src memory address.size: size in bytes to copy.
-
void
hl_memcpy_device2host(void *dest_h, void *src_d, size_t size)¶ Copy device memory to host memory.
- Parameters
dest_h: dst memory address.src_d: src memory address.size: size in bytes to copy.
-
void
hl_memcpy_device2device(void *dest_d, void *src_d, size_t size)¶ Copy device memory to device memory.
- Parameters
dest_d: dst memory address.src_d: src memory address.size: size in bytes to copy.
-
void
hl_rand(real *dest_d, size_t num)¶ Generate uniformly distributed floats (0, 1.0].
- Parameters
dest_d: pointer to device memory to store results.num: number of floats to generate.
-
void
hl_srand(unsigned int seed)¶ Set the seed value of the random number generator.
- Parameters
seed: seed value.
-
void
hl_memcpy_async(void *dst, void *src, size_t size, hl_stream_t stream)¶ Copy data.
- Parameters
dst: dst memory address(host or device).src: src memory address(host or device).size: size in bytes to copy.stream: stream id.
-
void
hl_stream_synchronize(hl_stream_t stream)¶ Waits for stream tasks to complete.
- Parameters
stream: stream id.
-
void
hl_create_event(hl_event_t *event)¶ Creates an event object.
- Parameters
event: New event.
-
void
hl_destroy_event(hl_event_t event)¶ Destroys an event object.
- Parameters
event: Event to destroy.
-
float
hl_event_elapsed_time(hl_event_t start, hl_event_t end)¶ Computes the elapsed time between events.
- Return
- time Time between start and end in ms.
- Parameters
start: Starting event.end: Ending event.
-
void
hl_stream_record_event(hl_stream_t stream, hl_event_t event)¶ Records an event.
- Parameters
stream: Stream in which to insert event.event: Event waiting to be recorded as completed.
-
void
hl_stream_wait_event(hl_stream_t stream, hl_event_t event)¶ Make a compute stream wait on an event.
- Parameters
stream: Stream in which to insert event.event: Event to wait on.
-
void
hl_event_synchronize(hl_event_t event)¶ Wait for an event to complete.
- Parameters
event: event to wait for.
-
void
hl_set_device_flags_block()¶ Sets block flags to be used for device executions.
- Note
- This interface needs to be called before hl_start.
-
const char *
hl_get_device_error_string()¶ Returns the last error string from a cuda runtime call.
-
const char *
hl_get_device_error_string(size_t err)¶ Returns the last error string from a cuda runtime call.
- See
- hl_get_device_last_error()
- Parameters
err: error number.
-
int
hl_get_device_last_error()¶ Returns the last error number.
- Return
- error number.
- See
- hl_get_device_error_string()
-
bool
hl_cuda_event_is_ready(hl_event_t event)¶ check cuda event is ready
- Return
- true cuda event is ready. false cuda event is not ready.
- Parameters
event: cuda event to query.
-
void
hl_device_synchronize()¶ hppl device synchronization.
CUDA Wrapper¶
hl_cuda_cublas.h¶
Functions
-
void
hl_matrix_transpose(real *A_d, real *C_d, int dimM, int dimN, int lda, int ldc)¶ Matrix transpose: C_d = T(A_d)
- Parameters
A_d: input matrix (dimM x dimN).C_d: output matrix (dimN x dimM).dimM: matrix height.dimN: matrix width.lda: the first dimension of A_d.ldc: the first dimension of C_d.
-
void
hl_matrix_transpose(real *A_d, real *C_d, int dimM, int dimN)¶
-
void
hl_matrix_inverse(real *A_d, real *C_d, int dimN, int lda, int ldc)¶
-
void
hl_matrix_mul(real *A_d, hl_trans_op_t transa, real *B_d, hl_trans_op_t transb, real *C_d, int dimM, int dimN, int dimK, real alpha, real beta, int lda, int ldb, int ldc)¶ C_d = alpha*(op(A_d) * op(B_d)) + beta*C_d.
- Parameters
A_d: input.transa: operation op(A) that is non-or transpose.B_d: input.transb: operation op(B) that is non-or transpose.C_d: output.dimM: matrix height of op(A) & CdimN: matrix width of op(B) & CdimK: width of op(A) & height of op(B)alpha: scalar used for multiplication.beta: scalar used for multiplication.lda: the first dimension of A_d.ldb: the first dimension of B_d.ldc: the first dimension of C_d.
-
void
hl_matrix_mul(real *A_d, hl_trans_op_t transa, real *B_d, hl_trans_op_t transb, real *C_d, int dimM, int dimN, int dimK, real alpha, real beta)¶ C_d = alpha*(op(A_d) * op(B_d)) + beta*C_d.
- Parameters
A_d: input.transa: operation op(A) that is non-or transpose.B_d: input.transb: operation op(B) that is non-or transpose.C_d: output.dimM: matrix height of op(A) & CdimN: matrix width of op(B) & CdimK: width of op(A) & height of op(B)alpha: scalar used for multiplication.beta: scalar used for multiplication.
-
void
hl_matrix_mul_vector(real *A_d, hl_trans_op_t trans, real *B_d, real *C_d, int dimM, int dimN, real alpha, real beta, int lda, int incb, int incc)¶ This function performs the matrix-vector multiplication. C_d = alpha*op(A_d)*B_d + beta*C_d.
- Parameters
A_d: matrix.trans: operation op(A) that is non-or transpose.B_d: vector with dimN(dimM) elements if trans==HPPL_OP_N(HPPL_OP_T).C_d: vector with dimM(dimN) elements if trans==HPPL_OP_N(HPPL_OP_T).dimM: number of rows of matrix A_d.dimN: number of columns of matrix A_d.alpha: scalar used for multiplication.beta: scalar used for multiplication.lda: the first dimension of A_d.incb: increase B_d size for compaction.incc: increase C_d size for compaction.
-
void
hl_matrix_mul_vector(real *A_d, hl_trans_op_t trans, real *B_d, real *C_d, int dimM, int dimN, real alpha, real beta)¶ This function performs the matrix-vector multiplication. C_d = alpha*op(A_d)*B_d + beta*C_d.
- Parameters
A_d: matrix.trans: operation op(A) that is non-or transpose.B_d: vector with dimN(dimM) elements if trans==HPPL_OP_N(HPPL_OP_T).C_d: vector with dimM(dimN) elements if trans==HPPL_OP_N(HPPL_OP_T).dimM: number of rows of matrix A_d.dimN: number of columns of matrix A_d.alpha: scalar used for multiplication.beta: scalar used for multiplication.
hl_cuda_cudnn.h¶
Typedefs
-
typedef struct _hl_tensor_descriptor *
hl_tensor_descriptor¶ hppl image descriptor.
-
typedef struct _hl_pooling_descriptor *
hl_pooling_descriptor¶ hppl pooling descriptor.
-
typedef struct _hl_filter_descriptor *
hl_filter_descriptor¶ hppl filter descriptor.
-
typedef struct _hl_convolution_descriptor *
hl_convolution_descriptor¶ hppl filter descriptor.
Enums
Functions
-
int
hl_get_cudnn_lib_version()¶ return cudnn lib version
-
void
hl_create_tensor_descriptor(hl_tensor_descriptor *image_desc)¶ create image descriptor.
- Parameters
image_desc: image descriptor.
-
void
hl_tensor_reshape(hl_tensor_descriptor image_desc, int batch_size, int feature_maps, int height, int width)¶ reshape image descriptor.
- Parameters
image_desc: image descriptor.batch_size: input batch size.feature_maps: image feature maps.height: image height.width: image width.
-
void
hl_tensor_reshape(hl_tensor_descriptor image_desc, int batch_size, int feature_maps, int height, int width, int nStride, int cStride, int hStride, int wStride)¶ reshape image descriptor.
- Parameters
image_desc: image descriptor.batch_size: input batch size.feature_maps: image feature maps.height: image height.width: image width.nStride: stride between two consecutive images.cStride: stride between two consecutive feature maps.hStride: stride between two consecutive rows.wStride: stride between two consecutive columns.
-
void
hl_destroy_tensor_descriptor(hl_tensor_descriptor image_desc)¶ destroy image descriptor.
- Parameters
image_desc: hppl image descriptor.
-
void
hl_create_pooling_descriptor(hl_pooling_descriptor *pooling_desc, hl_pooling_mode_t mode, int height, int width, int height_padding, int width_padding, int stride_height, int stride_width)¶ create pooling descriptor.
- Parameters
pooling_desc: pooling descriptor.mode: pooling mode.height: height of the pooling window.width: width of the pooling window.height_padding: padding height.width_padding: padding width.stride_height: pooling vertical stride.stride_width: pooling horizontal stride.
-
void
hl_destroy_pooling_descriptor(hl_pooling_descriptor pooling_desc)¶ destroy pooling descriptor.
- Parameters
pooling_desc: hppl pooling descriptor.
-
void
hl_pooling_forward(hl_tensor_descriptor input, real *input_image, hl_tensor_descriptor output, real *output_image, hl_pooling_descriptor pooling)¶ pooling forward(calculate output image).
- Parameters
input: input image descriptor.input_image: input image data.output: output image descriptor.output_image: output image data.pooling: pooling descriptor.
-
void
hl_pooling_backward(hl_tensor_descriptor input, real *input_image, real *input_image_grad, hl_tensor_descriptor output, real *output_image, real *output_image_grad, hl_pooling_descriptor pooling)¶ pooling backward(calculate input image gradient).
- Parameters
input: input image descriptor.input_image: input image data.input_image_grad: input image gradient data.output: output image descriptor.output_image: output image data.output_image_grad: output image gradient data.pooling: pooling descriptor.
-
void
hl_create_filter_descriptor(hl_filter_descriptor *filter, int input_feature_maps, int output_feature_maps, int height, int width)¶ create filter descriptor.
- Parameters
filter: filter descriptor.input_feature_maps: input image feature maps.output_feature_maps: output image feature maps.height: filter height.width: filter width.
-
void
hl_conv_workspace(hl_tensor_descriptor input, hl_tensor_descriptor output, hl_filter_descriptor filter, hl_convolution_descriptor conv, int *convFwdAlgo, size_t *fwdLimitBytes, int *convBwdDataAlgo, size_t *bwdDataLimitBytes, int *convBwdFilterAlgo, size_t *bwdFilterLimitBytes)¶ convolution workspace configuration
- Parameters
input: image descriptoroutput: image descriptorfilter: filter descriptorconv: convolution descriptorconvFwdAlgo: forward algorithmfwdLimitBytes: forward workspace sizeconvBwdDataAlgo: backward data algorithmbwdDataLimitBytes: backward data workspace sizeconvBwdFilterAlgo: backward filter algorithmbwdFilterLimitBytes: backward filter workspace size
-
void
hl_destroy_filter_descriptor(hl_filter_descriptor filter)¶ destroy filter descriptor.
- Parameters
filter: hppl filter descriptor.
-
void
hl_create_convolution_descriptor(hl_convolution_descriptor *conv, hl_tensor_descriptor image, hl_filter_descriptor filter, int padding_height, int padding_width, int stride_height, int stride_width)¶ create convolution descriptor.
- Parameters
conv: conv descriptor.image: input image descriptor.filter: filter descriptor.padding_height: padding height.padding_width: padding width.stride_height: stride height.stride_width: stride width.
-
void
hl_reset_convolution_descriptor(hl_convolution_descriptor conv, hl_tensor_descriptor image, hl_filter_descriptor filter, int padding_height, int padding_width, int stride_height, int stride_width)¶ reset convolution descriptor.
- Parameters
conv: conv descriptor.image: input image descriptor.filter: filter descriptor.padding_height: padding height.padding_width: padding width.stride_height: stride height.stride_width: stride width.
-
void
hl_destroy_convolution_descriptor(hl_convolution_descriptor conv)¶ destroy convolution descriptor.
- Parameters
conv: hppl convolution descriptor.
-
void
hl_convolution_forward(hl_tensor_descriptor input, real *input_data, hl_tensor_descriptor output, real *output_data, hl_filter_descriptor filter, real *filter_data, hl_convolution_descriptor conv, void *gpuWorkSpace, size_t sizeInBytes, int convFwdAlgo)¶ convolution forward(calculate output image).
- Parameters
input: input image descriptor.input_data: input image data.output: output image descriptor.output_data: output image data.filter: filter descriptor.filter_data: filter data.conv: convolution descriptor.gpuWorkSpace: limited gpu workspace.sizeInBytes: gpu workspace size (bytes).convFwdAlgo: forward algorithm.
-
void
hl_convolution_forward_add_bias(hl_tensor_descriptor bias, real *bias_data, hl_tensor_descriptor output, real *output_data)¶ convolution forward add bias(calculate output add bias).
- Parameters
bias: bias descriptor.bias_data: bias data.output: output image descriptor.output_data: output image data.
-
void
hl_convolution_backward_filter(hl_tensor_descriptor input, real *input_data, hl_tensor_descriptor output, real *output_grad_data, hl_filter_descriptor filter, real *filter_grad_data, hl_convolution_descriptor conv, void *gpuWorkSpace, size_t sizeInBytes, int convBwdFilterAlgo)¶ convolution backward filter(calculate filter grad data).
- Parameters
input: input image descriptor.input_data: input image data.output: output image descriptor.output_grad_data: output image grad data.filter: filter descriptor.filter_grad_data: filter grad data.conv: convolution descriptor.gpuWorkSpace: limited gpu workspace.sizeInBytes: gpu workspace size (bytes).convBwdFilterAlgo: backward filter algorithm.
-
void
hl_convolution_backward_data(hl_tensor_descriptor input, real *input_data_grad, hl_tensor_descriptor output, real *output_grad_data, hl_filter_descriptor filter, real *filter_data, hl_convolution_descriptor conv, void *gpuWorkSpace, size_t sizeInBytes, int convBwdDataAlgo)¶ convolution backward data(calculate input image grad data).
- Parameters
input: input image descriptor.input_data_grad: input image grad data.output: output image descriptor.output_grad_data: output image grad data.filter: filter descriptor.filter_data: filter data.conv: convolution descriptor.gpuWorkSpace: limited gpu workspace.sizeInBytes: gpu workspace size (bytes).convBwdDataAlgo: backward data algorithm.
-
void
hl_convolution_backward_bias(hl_tensor_descriptor bias, real *bias_grad_data, hl_tensor_descriptor output, real *output_grad_data)¶ convolution backward bias(calculate bias grad data).
- Parameters
bias: bias descriptor.bias_grad_data: bias grad data.output: output image descriptor.output_grad_data: output image grad data.
-
void
hl_softmax_forward(real *input, real *output, int height, int width)¶ softmax forward.
- Parameters
input: input value.output: output value.height: matrix height.width: matrix width.
-
void
hl_softmax_backward(real *output_value, real *output_grad, int height, int width)¶ softmax backward.
- Parameters
output_value: output value data.output_grad: output grad data.height: matrix height.width: matrix width.
-
void
hl_batch_norm_forward_training(hl_tensor_descriptor inputDesc, real *input, hl_tensor_descriptor outputDesc, real *output, hl_tensor_descriptor bnParamDesc, real *scale, real *bias, double factor, real *runningMean, real *runningInvVar, double epsilon, real *savedMean, real *savedVar)¶ cudnn batch norm forward.
- Parameters
inputDesc: input tensor descriptor desc.input: input data.outputDesc: output tensor descriptor desc.output: output data.bnParamDesc: tensor descriptor desc. bnScale, bnBias, running mean/var, save_mean/var.scale: batch normalization scale parameter (in original paper scale is referred to as gamma).bias: batch normalization bias parameter (in original paper scale is referred to as beta).factor: Factor used in the moving average computation. runningMean = newMean * factor- runningMean * (1 - factor)
runningMean: running mean.runningInvVar: running variance.epsilon: Epsilon value used in the batch normalization formula.savedMean: optional cache to save intermediate results.savedVar: optional cache to save intermediate results.
-
void
hl_batch_norm_forward_inference(hl_tensor_descriptor inputDesc, real *input, hl_tensor_descriptor outputDesc, real *output, hl_tensor_descriptor bnParamDesc, real *scale, real *bias, real *estimatedMean, real *estimatedVar, double epsilon)¶ cudnn batch norm forward.
- Parameters
inputDesc: input tensor descriptor desc.input: input data.outputDesc: output tensor descriptor desc.output: output data.bnParamDesc: tensor descriptor desc. bnScale, bnBias, running mean/var, save_mean/var.scale: batch normalization scale parameter (in original paper scale is referred to as gamma).bias: batch normalization bias parameter (in original paper scale is referred to as beta).estimatedMean:estimatedVar: It is suggested that resultRunningMean, resultRunningVariance from the cudnnBatchNormalizationForwardTraining call accumulated during the training phase are passed as inputs here.epsilon: Epsilon value used in the batch normalization formula.
-
void
hl_batch_norm_backward(hl_tensor_descriptor inputDesc, real *input, hl_tensor_descriptor outGradDesc, real *outGrad, hl_tensor_descriptor inGradDesc, real *inGrad, hl_tensor_descriptor dBnParamDesc, real *scale, real *scaleGrad, real *biasGrad, double epsilon, real *savedMean, real *savedInvVar)¶ cudnn batch norm forward.
- Parameters
inputDesc: input tensor descriptor desc.input: input data.outGradDesc: output tensor descriptor desc.outGrad: output data.inGradDesc: input tensor descriptor desc.inGrad: input data.dBnParamDesc: tensor descriptor desc. bnScale, bnBias, running mean/var, save_mean/var.scale: batch normalization scale parameter (in original paper scale is referred to as gamma).scaleGrad: batch normalization scale parameter (in original paper scale is referred to as gamma) gradient.biasGrad: batch normalization bias parameter (in original paper scale is referred to as beta) gradient.epsilon: Epsilon value used in the batch normalization formula.savedMean: optional cache to save intermediate results.savedInvVar: optional cache to save intermediate results.
hl_cuda_cudnn.h¶
Defines
-
HL_CUDA_CUDNN_PH_¶
-
GET_TENSOR_DESCRIPTOR(image)¶
-
GET_FILTER_DESCRIPTOR(filter)¶
-
GET_CONVOLUTION_DESCRIPTOR(conv)¶
Typedefs
-
typedef struct _cudnn_tensor_descriptor *
cudnn_tensor_descriptor¶
-
typedef struct _cudnn_pooling_descriptor *
cudnn_pooling_descriptor¶
-
typedef struct _cudnn_filter_descriptor *
cudnn_filter_descriptor¶
-
typedef struct _cudnn_convolution_descriptor *
cudnn_convolution_descriptor¶
-
struct
_cudnn_tensor_descriptor¶
-
struct
_cudnn_pooling_descriptor¶
-
struct
_cudnn_filter_descriptor¶
-
struct
_cudnn_convolution_descriptor¶