# copyright (c) 2018 paddlepaddle authors. all rights reserved. # # licensed under the apache license, version 2.0 (the "license"); # you may not use this file except in compliance with the license. # you may obtain a copy of the license at # # http://www.apache.org/licenses/license-2.0 # # unless required by applicable law or agreed to in writing, software # distributed under the license is distributed on an "as is" basis, # without warranties or conditions of any kind, either express or implied. # see the license for the specific language governing permissions and # limitations under the license. import os import tempfile import unittest import numpy as np from imperative_test_utils import fix_model_dict, train_lenet import paddle from paddle import fluid from paddle.framework import core, set_flags from paddle.nn import ( BatchNorm2D, Conv2D, Linear, MaxPool2D, Sequential, Softmax, ) from paddle.nn.layer import LeakyReLU, PReLU, ReLU, Sigmoid from paddle.quantization import ImperativeQuantAware paddle.enable_static() os.environ["CPU_NUM"] = "1" if core.is_compiled_with_cuda(): set_flags({"FLAGS_cudnn_deterministic": True}) def get_vaild_warning_num(warning, w): num = 0 for i in range(len(w)): if warning in str(w[i].message): num += 1 return num class ImperativeLenet(paddle.nn.Layer): def __init__(self, num_classes=10): super().__init__() conv2d_w1_attr = paddle.ParamAttr(name="conv2d_w_1") conv2d_w2_attr = paddle.ParamAttr(name="conv2d_w_2") fc_w1_attr = paddle.ParamAttr(name="fc_w_1") fc_w2_attr = paddle.ParamAttr(name="fc_w_2") fc_w3_attr = paddle.ParamAttr(name="fc_w_3") conv2d_b2_attr = paddle.ParamAttr(name="conv2d_b_2") fc_b1_attr = paddle.ParamAttr(name="fc_b_1") fc_b2_attr = paddle.ParamAttr(name="fc_b_2") fc_b3_attr = paddle.ParamAttr(name="fc_b_3") self.features = Sequential( Conv2D( in_channels=1, out_channels=6, kernel_size=3, stride=1, padding=1, weight_attr=conv2d_w1_attr, bias_attr=False, ), BatchNorm2D(6), ReLU(), MaxPool2D(kernel_size=2, stride=2), Conv2D( in_channels=6, out_channels=16, kernel_size=5, stride=1, padding=0, weight_attr=conv2d_w2_attr, bias_attr=conv2d_b2_attr, ), BatchNorm2D(16), PReLU(), MaxPool2D(kernel_size=2, stride=2), ) self.fc = Sequential( Linear( in_features=400, out_features=120, weight_attr=fc_w1_attr, bias_attr=fc_b1_attr, ), LeakyReLU(), Linear( in_features=120, out_features=84, weight_attr=fc_w2_attr, bias_attr=fc_b2_attr, ), Sigmoid(), Linear( in_features=84, out_features=num_classes, weight_attr=fc_w3_attr, bias_attr=fc_b3_attr, ), Softmax(), ) def forward(self, inputs): x = self.features(inputs) x = paddle.flatten(x, 1) x = self.fc(x) return x class TestImperativeOutSclae(unittest.TestCase): def setUp(self): self.root_path = tempfile.TemporaryDirectory() self.param_save_path = os.path.join( self.root_path.name, "lenet.pdparams" ) self.save_path = os.path.join( self.root_path.name, "lenet_dynamic_outscale_infer_model" ) def tearDown(self): self.root_path.cleanup() def test_out_scale_acc(self): seed = 1000 lr = 0.001 weight_quantize_type = 'abs_max' activation_quantize_type = 'moving_average_abs_max' imperative_out_scale = ImperativeQuantAware( weight_quantize_type=weight_quantize_type, activation_quantize_type=activation_quantize_type, ) with fluid.dygraph.guard(): np.random.seed(seed) paddle.static.default_main_program().random_seed = seed paddle.static.default_startup_program().random_seed = seed lenet = ImperativeLenet() lenet = fix_model_dict(lenet) imperative_out_scale.quantize(lenet) reader = paddle.batch( paddle.dataset.mnist.test(), batch_size=32, drop_last=True ) adam = paddle.optimizer.Adam( learning_rate=lr, parameters=lenet.parameters() ) loss_list = train_lenet(lenet, reader, adam) lenet.eval() save_dict = lenet.state_dict() paddle.save(save_dict, self.param_save_path) for i in range(len(loss_list) - 1): self.assertTrue( loss_list[i] > loss_list[i + 1], msg='Failed to do the imperative qat.', ) with fluid.dygraph.guard(): lenet = ImperativeLenet() load_dict = paddle.load(self.param_save_path) imperative_out_scale.quantize(lenet) lenet.set_dict(load_dict) reader = paddle.batch( paddle.dataset.mnist.test(), batch_size=32, drop_last=True ) adam = paddle.optimizer.Adam( learning_rate=lr, parameters=lenet.parameters() ) loss_list = train_lenet(lenet, reader, adam) lenet.eval() imperative_out_scale.save_quantized_model( layer=lenet, path=self.save_path, input_spec=[ paddle.static.InputSpec( shape=[None, 1, 28, 28], dtype='float32' ) ], ) for i in range(len(loss_list) - 1): self.assertTrue( loss_list[i] > loss_list[i + 1], msg='Failed to do the imperative qat.', ) if __name__ == '__main__': unittest.main()