# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import numpy as np import unittest import paddle import paddle.nn as nn import paddle.fluid as fluid import paddle.fluid.framework as framework import paddle.nn.initializer as initializer from paddle.fluid.core import VarDesc DELTA = 0.00001 def get_uniform_min_and_max(weight): min_value = np.min(weight) max_value = np.max(weight) return min_value, max_value def check_cast_op(op): return op.type == 'cast' and \ op.attr('in_dtype') == VarDesc.VarType.FP32 and \ op.attr('out_dtype') == VarDesc.VarType.FP16 class TestConstantInitializer(unittest.TestCase): def static_test_constant_initializer_common(self, init_inst, dtype="float32", value_target=0.0): paddle.enable_static() program = framework.Program() block = program.global_block() for _ in range(2): block.create_parameter( dtype=dtype, shape=[5, 10], lod_level=0, name="param", initializer=init_inst) num_ops = 2 if dtype == "float16" else 1 self.assertEqual(len(block.ops), num_ops) init_op = block.ops[0] self.assertEqual(init_op.type, 'fill_constant') self.assertAlmostEqual(init_op.attr('value'), value_target, delta=DELTA) paddle.disable_static() return block def test_constant_initializer_default_value_static(self, dtype="float32"): """Test the constant initializer with default value in static graph """ block = self.static_test_constant_initializer_common( init_inst=initializer.Constant(), dtype=dtype, value_target=0.0) return block def test_constant_initializer_default_value_dygraph(self, dtype="float32"): """Test constant initializer with supplied value in dygraph """ with fluid.dygraph.guard(): linear = nn.Linear(2, 4, weight_attr=nn.initializer.Constant()) mat_target = np.ones((2, 4), dtype=dtype) * 0.0 mat_linear = linear.weight.numpy() mismatch = np.sum( (mat_target - mat_linear) * (mat_target - mat_linear)) self.assertAlmostEqual(mismatch, 0.0, delta=DELTA) def test_constant_initializer_static(self, dtype="float32"): """Test constant initializer with supplied value in static graph """ block = self.static_test_constant_initializer_common( init_inst=initializer.Constant(2.3), dtype=dtype, value_target=2.3) return block def test_constant_initializer_dygraph(self, dtype="float32"): """Test constant initializer with supplied value in dygraph """ with fluid.dygraph.guard(): linear = nn.Linear( 2, 4, weight_attr=nn.initializer.Constant(value=2.0)) mat_target = np.ones((2, 4), dtype=dtype) * 2.0 mat_linear = linear.weight.numpy() mismatch = np.sum( (mat_target - mat_linear) * (mat_target - mat_linear)) self.assertAlmostEqual(mismatch, 0.0, delta=DELTA) def test_constant_initializer_fp16(self): """Test constant initializer with float16 """ block = self.test_constant_initializer_default_value_static("float16") self.assertTrue(check_cast_op(block.ops[1])) block = self.test_constant_initializer_static("float16") self.assertTrue(check_cast_op(block.ops[1])) self.test_constant_initializer_default_value_dygraph("float16") self.test_constant_initializer_dygraph("float16") class TestKaimingInitializer(unittest.TestCase): def static_test_kaiming_initializer_common(self, init_inst, dtype="float32", uniform=False, is_conv=False): paddle.enable_static() program = framework.Program() block = program.global_block() shape_mat = [5, 10, 15, 20] if is_conv else [5, 10] for _ in range(2): param = block.create_parameter( dtype="float32", shape=shape_mat, lod_level=0, name="param", initializer=init_inst) self.assertEqual(len(block.ops), 1) init_op = block.ops[0] if uniform: self.assertEqual(init_op.type, 'uniform_random') if is_conv: receptive_field_size = float(15 * 20) limit = np.sqrt(6.0 / (param.shape[1] * receptive_field_size)) else: limit = np.sqrt(6.0 / param.shape[0]) self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA) self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA) else: self.assertEqual(init_op.type, 'gaussian_random') if is_conv: receptive_field_size = float(15 * 20) std = np.sqrt(2.0 / (param.shape[1] * receptive_field_size)) else: std = np.sqrt(2.0 / param.shape[0]) self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA) self.assertAlmostEqual(init_op.attr('std'), std, delta=DELTA) paddle.disable_static() def dygraph_test_kaiming_initializer_common(self, init_inst, dtype="float32", uniform=False): linear = nn.Linear(40, 20, weight_attr=init_inst) def test_kaiming_dygraph(self): self.dygraph_test_kaiming_initializer_common( init_inst=initializer.KaimingUniform(), dtype="float32", uniform=True) self.dygraph_test_kaiming_initializer_common( init_inst=initializer.KaimingNormal(), dtype="float32", uniform=False) def test_kaiming_uniform_initializer_static(self): """Test Kaiming unorm initializer for matrix multiply. """ self.static_test_kaiming_initializer_common( init_inst=initializer.KaimingUniform(), dtype="float32", uniform=True, is_conv=False) def test_kaiming_uniform_initializer_conv_static(self): """Test Kaiming unorm initializer for convolutions. """ self.static_test_kaiming_initializer_common( init_inst=initializer.KaimingUniform(), dtype="float32", uniform=True, is_conv=True) def test_kaiming_normal_initializer_static(self): """Test Kaiming normal initializer for matrix multiply. """ self.static_test_kaiming_initializer_common( init_inst=initializer.KaimingNormal(), dtype="float32", uniform=False, is_conv=False) def test_kaiming_normal_initializer_conv_static(self): """Test Kaiming normal initializer for convolutions. """ self.static_test_kaiming_initializer_common( init_inst=initializer.KaimingNormal(), dtype="float32", uniform=False, is_conv=True) class TestUniform(unittest.TestCase): def test_uniform_common(self, dtype="float32", seed=0): """Test the uniform initializer with default value """ paddle.enable_static() program = framework.Program() program.random_seed = seed block = program.global_block() for _ in range(2): block.create_parameter( dtype=dtype, shape=[5, 10], lod_level=0, name="param", initializer=initializer.Uniform()) num_ops = 2 if dtype == "float16" else 1 self.assertEqual(len(block.ops), num_ops) init_op = block.ops[0] self.assertEqual(init_op.type, 'uniform_random') self.assertAlmostEqual(init_op.attr('min'), -1.0, delta=DELTA) self.assertAlmostEqual(init_op.attr('max'), 1.0, delta=DELTA) self.assertEqual(init_op.attr('seed'), seed) paddle.disable_static() return block def test_uniform_initializer_default_value(self, dtype="float32", seed=0, min_value=-1.0, max_vlaue=1.0): """Test the uniform initializer with default value """ paddle.enable_static() program = framework.Program() program.random_seed = seed block = program.global_block() for _ in range(2): block.create_parameter( dtype=dtype, shape=[5, 10], lod_level=0, name="param", initializer=initializer.Uniform()) num_ops = 2 if dtype == "float16" else 1 self.assertEqual(len(block.ops), num_ops) init_op = block.ops[0] self.assertEqual(init_op.type, 'uniform_random') self.assertAlmostEqual(init_op.attr('min'), min_value, delta=DELTA) self.assertAlmostEqual(init_op.attr('max'), max_vlaue, delta=DELTA) self.assertEqual(init_op.attr('seed'), seed) paddle.disable_static() return block def test_uniform_initializer(self, dtype="float32", seed=0, min_value=-4.2, max_vlaue=3.1): """Test uniform initializer with supplied attributes """ paddle.enable_static() program = framework.Program() program.random_seed = seed block = program.global_block() for _ in range(2): block.create_parameter( dtype=dtype, shape=[5, 10], lod_level=0, name="param", initializer=initializer.Uniform(min_value, max_vlaue)) num_ops = 2 if dtype == "float16" else 1 self.assertEqual(len(block.ops), num_ops) init_op = block.ops[0] self.assertEqual(init_op.type, 'uniform_random') self.assertAlmostEqual(init_op.attr('min'), min_value, delta=DELTA) self.assertAlmostEqual(init_op.attr('max'), max_vlaue, delta=DELTA) paddle.disable_static() return block def test_uniform_initializer_two_op(self, dtype="float32", seed=123, min_value=-4.2, max_vlaue=0.0): """Test uniform initializer with supplied attributes """ paddle.enable_static() program = framework.Program() program.random_seed = seed block = program.global_block() for i in range(2): block.create_parameter( dtype=dtype, shape=[5, 10], lod_level=0, name="param", initializer=initializer.Uniform(min_value, float(i))) num_ops = 2 if dtype == "float16" else 1 self.assertEqual(len(block.ops), num_ops) init_op0 = block.ops[0] self.assertEqual(init_op0.type, 'uniform_random') self.assertAlmostEqual(init_op0.attr('min'), min_value, delta=DELTA) self.assertAlmostEqual(init_op0.attr('max'), 0.0, delta=DELTA) self.assertEqual(init_op0.attr("seed"), seed) paddle.disable_static() return block def test_uniform_initializer_fp16(self): """Test uniform initializer with float16 """ block = self.test_uniform_initializer_default_value("float16") self.assertTrue(check_cast_op(block.ops[1])) block = self.test_uniform_initializer(dtype="float16") self.assertTrue(check_cast_op(block.ops[1])) block = self.test_uniform_initializer_two_op("float16") self.assertTrue(check_cast_op(block.ops[1])) def test_uniform_initializer_dygraph(self): """Test uniform initializer in dygraph model. """ paddle.disable_static() weight_attr = paddle.framework.ParamAttr( name="linear_weight", initializer=paddle.nn.initializer.Uniform( low=-0.5, high=0.5)) linear = paddle.nn.Linear(2, 2, weight_attr=weight_attr) min_value, max_value = get_uniform_min_and_max(linear.weight.numpy()) self.assertTrue(min_value >= -0.5, 'min value {} should >= -0.5'.format(min_value)) self.assertTrue(max_value <= 0.5, 'max value {} should <= 0.5'.format(max_value)) class TestNormal(unittest.TestCase): def test_normal_initializer_default_value(self): """Test the normal initializer with default value """ paddle.enable_static() program = framework.Program() block = program.global_block() for _ in range(2): block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="param", initializer=initializer.Normal()) self.assertEqual(len(block.ops), 1) init_op = block.ops[0] self.assertEqual(init_op.type, 'gaussian_random') self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA) self.assertAlmostEqual(init_op.attr('std'), 1.0, delta=DELTA) self.assertEqual(init_op.attr('seed'), 0) paddle.disable_static() def test_normal_initializer(self, dtype="float32"): """Test normal initializer with supplied attributes """ paddle.enable_static() program = framework.Program() block = program.global_block() for _ in range(2): block.create_parameter( dtype=dtype, shape=[5, 10], lod_level=0, name="param", initializer=initializer.Normal(2.3, 1.9)) num_ops = 2 if dtype == "float16" else 1 self.assertEqual(len(block.ops), num_ops) init_op = block.ops[0] self.assertEqual(init_op.type, 'gaussian_random') self.assertAlmostEqual(init_op.attr('mean'), 2.3, delta=DELTA) self.assertAlmostEqual(init_op.attr('std'), 1.9, delta=DELTA) paddle.disable_static() return block def test_normal_initializer_fp16(self): """Test normal initializer with float16 """ block = self.test_normal_initializer("float16") self.assertTrue(check_cast_op(block.ops[1])) def test_normal_initializer_dygraph(self): """Test normal initializer in dygraph model. """ paddle.disable_static() weight_attr = paddle.framework.ParamAttr( name="linear_weight", initializer=paddle.nn.initializer.Normal( mean=0.0, std=2.0)) linear = paddle.nn.Linear(2, 2, weight_attr=weight_attr) class TestTruncatedNormal(unittest.TestCase): def test_truncated_normal_initializer_default_value(self): """Test the truncated normal initializer with default value """ paddle.enable_static() program = framework.Program() block = program.global_block() for _ in range(2): block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="param", initializer=initializer.TruncatedNormal()) self.assertEqual(len(block.ops), 1) init_op = block.ops[0] self.assertEqual(init_op.type, 'truncated_gaussian_random') self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA) self.assertAlmostEqual(init_op.attr('std'), 1.0, delta=DELTA) self.assertEqual(init_op.attr('seed'), 0) paddle.disable_static() def test_truncated_normal_initializer(self, dtype="float32"): """Test truncated normal initializer with supplied attributes """ paddle.enable_static() program = framework.Program() block = program.global_block() for _ in range(2): block.create_parameter( dtype=dtype, shape=[5, 10], lod_level=0, name="param", initializer=initializer.TruncatedNormal(2.3, 1.9)) num_ops = 2 if dtype == "float16" else 1 self.assertEqual(len(block.ops), num_ops) init_op = block.ops[0] self.assertEqual(init_op.type, 'truncated_gaussian_random') self.assertAlmostEqual(init_op.attr('mean'), 2.3, delta=DELTA) self.assertAlmostEqual(init_op.attr('std'), 1.9, delta=DELTA) paddle.disable_static() return block def test_truncated_normal_initializer_fp16(self): """Test truncated normal initializer with float16 """ paddle.enable_static() block = self.test_truncated_normal_initializer("float16") self.assertTrue(check_cast_op(block.ops[1])) def test_truncated_normal_initializer_dygraph(self): """Test truncated normal initializer in dygraph model. """ paddle.disable_static() weight_attr = paddle.framework.ParamAttr( name="linear_weight", initializer=paddle.nn.initializer.TruncatedNormal( mean=0.0, std=2.0)) linear = paddle.nn.Linear(2, 2, weight_attr=weight_attr) class TestXavierUniform(unittest.TestCase): def test_xavier_uniform_initializer(self): """Test Xavier initializer with uniform distribution on for matrix multiply. """ paddle.enable_static() program = framework.Program() block = program.global_block() for _ in range(2): param = block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="param", initializer=initializer.XavierUniform()) self.assertEqual(len(block.ops), 1) init_op = block.ops[0] self.assertEqual(init_op.type, 'uniform_random') limit = np.sqrt(6.0 / (param.shape[0] + param.shape[1])) self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA) self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA) self.assertEqual(init_op.attr('seed'), 0) paddle.disable_static() def test_xavier_uniform_initializer_conv(self): """Test Xavier initializer with uniform distribution on for convolutions. """ paddle.enable_static() program = framework.Program() block = program.global_block() for _ in range(2): param = block.create_parameter( dtype="float32", shape=[5, 10, 15, 20], lod_level=0, name="param", initializer=initializer.XavierUniform()) self.assertEqual(len(block.ops), 1) init_op = block.ops[0] self.assertEqual(init_op.type, 'uniform_random') receptive_field_size = float(15 * 20) limit = np.sqrt(6.0 / ( (param.shape[0] + param.shape[1]) * receptive_field_size)) self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA) self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA) self.assertEqual(init_op.attr('seed'), 0) def test_xavier_uniform_initializer_dygraph(self): """Test xavier uniform initializer in dygraph model. """ paddle.disable_static() weight_attr = paddle.framework.ParamAttr( name="linear_weight", initializer=paddle.nn.initializer.XavierUniform()) linear = paddle.nn.Linear(2, 2, weight_attr=weight_attr) class TestXavierNormal(unittest.TestCase): def test_xavier_normal_initializer(self): """Test Xavier initializer with normal distribution on for matrix multiply. """ paddle.enable_static() program = framework.Program() block = program.global_block() for _ in range(2): param = block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="param", initializer=initializer.XavierNormal()) self.assertEqual(len(block.ops), 1) init_op = block.ops[0] self.assertEqual(init_op.type, 'gaussian_random') std = np.sqrt(2.0 / (param.shape[0] + param.shape[1])) self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA) self.assertAlmostEqual(init_op.attr('std'), std, delta=DELTA) self.assertEqual(init_op.attr('seed'), 0) paddle.disable_static() def test_xavier_normal_initializer_conv(self): """Test Xavier initializer with normal distribution on for convolutions. """ paddle.enable_static() program = framework.Program() block = program.global_block() for _ in range(2): param = block.create_parameter( dtype="float32", shape=[5, 10, 15, 20], lod_level=0, name="param", initializer=initializer.XavierNormal()) self.assertEqual(len(block.ops), 1) init_op = block.ops[0] self.assertEqual(init_op.type, 'gaussian_random') receptive_field_size = float(15 * 20) std = np.sqrt(2.0 / ( (param.shape[0] + param.shape[1]) * receptive_field_size)) self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA) self.assertAlmostEqual(init_op.attr('std'), std, delta=DELTA) self.assertEqual(init_op.attr('seed'), 0) paddle.disable_static() def test_xavier_normal_initializer_dygraph(self): """Test xavier normal initializer in dygraph model. """ paddle.disable_static() weight_attr = paddle.framework.ParamAttr( name="linear_weight", initializer=paddle.nn.initializer.XavierNormal()) linear = paddle.nn.Linear(2, 2, weight_attr=weight_attr) class TestAssign(unittest.TestCase): def test_assign_initializer(self, dtype="float32"): """Test the numpy array initializer with supplied arguments """ paddle.enable_static() import numpy program = framework.Program() block = program.global_block() np_array = numpy.random.random((10000)).astype(dtype) for _ in range(2): block.create_parameter( dtype=np_array.dtype, shape=np_array.shape, lod_level=0, name="param", initializer=initializer.Assign(np_array)) num_ops = 2 if dtype == "float16" else 1 self.assertEqual(len(block.ops), num_ops) init_op = block.ops[0] self.assertEqual(init_op.type, 'assign_value') assert (init_op.attr('fp32_values') == np_array).all() paddle.disable_static() return block def test_assign_initializer_fp16(self): """Test the numpy array initializer with float16 """ block = self.test_assign_initializer("float16") self.assertTrue(block.ops[1]) def test_assign_initializer_dygraph_1(self): """Test assign initializer in dygraph model. """ paddle.disable_static() weight_attr_1 = paddle.framework.ParamAttr( name="linear_weight_1", initializer=paddle.nn.initializer.Assign(np.array([2, 2]))) linear_1 = paddle.nn.Linear(2, 2, weight_attr=weight_attr_1) self.assertTrue((linear_1.weight.numpy() == [2.0, 2.0]).all(), '') def test_assign_initializer_dygraph_2(self): """Test assign initializer in dygraph model. """ paddle.disable_static() weight_attr_2 = paddle.framework.ParamAttr( name="linear_weight_2", initializer=paddle.nn.initializer.Assign([2, 2])) linear_2 = paddle.nn.Linear(2, 2, weight_attr=weight_attr_2) self.assertTrue((linear_2.weight.numpy() == [2.0, 2.0]).all(), '') def test_assign_initializer_dygraph_3(self): """Test assign initializer in dygraph model. """ paddle.disable_static() weight_attr_3 = paddle.framework.ParamAttr( name="linear_weight_3", initializer=paddle.nn.initializer.Assign(paddle.full([2], 2))) linear_3 = paddle.nn.Linear(2, 2, weight_attr=weight_attr_3) self.assertTrue((linear_3.weight.numpy() == [2.0, 2.0]).all(), '') if __name__ == '__main__': unittest.main()