#!/usr/bin/env python3 # Copyright (c) 2021 CINN Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import math import numpy as np import cinn from cinn import frontend from cinn import runtime from cinn import lang from cinn import framework from cinn import ir from cinn import common from cinn.poly import create_stages import logging class SingleOpTester(unittest.TestCase): ''' A unittest framework for testing a single operator. Two methods one should override for each Operator's unittest 1. create_target_data 2. test_op ''' def setUp(self): np.random.seed(0) self.counter = 0 self.target = common.DefaultHostTarget() def create_target_data(self, inputs_data, attrs): ''' create the target of the operator's execution output. ''' raise NotImplemented def test_op(self): ''' USER API The real use case should implement this method! ''' pass def to_test_op(self, input_shapes, output_shapes, op_name, attrs, out_index=None, do_infer_shape=False): ''' Test the operator. ''' self.compiler = cinn.Compiler.create(self.target) inputs = [] inputs_data = [] for i_shape in input_shapes: expr_shape = [] inputs_data.append( np.around(np.random.random(i_shape).astype("float32"), 3)) for dim_shape in i_shape: expr_shape.append(ir.Expr(dim_shape)) inputs.append( lang.Placeholder("float32", self.__gen_var_name(), expr_shape).to_tensor()) args = [] temp_inputs = [] alignment = 0 if self.target.arch == common.Target.Arch.X86: alignment = 32 for in_data in inputs_data: temp_inputs.append( runtime.cinn_buffer_t(in_data, runtime.cinn_x86_device, alignment)) for in_data in temp_inputs: args.append(runtime.cinn_pod_value_t(in_data)) if output_shapes == None: correct_result, output_shapes = self.create_target_data( inputs_data, attrs) else: correct_result = self.create_target_data(inputs_data, attrs) func = self.__lower(op_name, inputs, output_shapes, attrs) builder = lang.Module.Builder(op_name, self.target) builder.add_function(func) module = builder.build() self.compiler.build(module) fn = self.compiler.lookup(func.name()) out = [] for out_shape in output_shapes: out.append( runtime.cinn_buffer_t( np.zeros(out_shape).astype("float32"), runtime.cinn_x86_device, alignment)) if do_infer_shape: infer_shapes = framework.Operator.get_op_shape_attrs("infershape") out_shapes = infer_shapes.infer_shape(op_name, input_shapes, attrs.attr_store) print("out_shapes", out_shapes) for out_shape in out_shapes[1:]: out.append( runtime.cinn_buffer_t( np.zeros(out_shape).astype("float32"), runtime.cinn_x86_device, alignment)) for out_data in out: args.append(runtime.cinn_pod_value_t(out_data)) fn(args) out_result = out[len(out) - 1].numpy() if out_index != None: out_result = out[out_index].numpy() self.assertTrue(np.allclose(out_result, correct_result, atol=1e-4)) def __lower(self, op_name, inputs, output_shapes, attrs): types = [common.Float(32)] strategy_map = framework.Operator.get_op_attrs("CINNStrategy") func = strategy_map.apply_strategy(op_name, attrs, inputs, types, output_shapes, self.target) logging.warning('func:\n\n%s\n', func) return func def __gen_var_name(self): self.counter = self.counter + 1 return "Var_" + str(self.counter) if __name__ == "__main__": unittest.main()