#!/usr/bin/env python3 # Copyright (c) 2021 CINN Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import cinn import numpy as np from cinn import runtime from cinn import ir from cinn import lang from cinn import Target from cinn import pe from cinn.poly import create_stages from cinn.common import * class TestPETransform(unittest.TestCase): def setUp(self): self.m = 100 self.n = 32 self.k = 16 self.target = Target() self.target.arch = Target.Arch.X86 self.target.bits = Target.Bit.k64 self.target.os = Target.OS.Linux self.transform_data = [] def test_transform_0(self): for (fn_name, pe_fn, np_fn) in [ ("matmul", pe.matmul, np.matmul), ]: self.compiler = cinn.Compiler.create(self.target) self.transform_matmul_tester(fn_name, pe_fn, np_fn, False, False, 1) def test_transform_1(self): for (fn_name, pe_fn, np_fn) in [ ("matmul", pe.matmul, np.matmul), ]: self.compiler = cinn.Compiler.create(self.target) self.transform_matmul_tester(fn_name, pe_fn, np_fn, False, True, 2) def transform_matmul_tester(self, fn_name, cinn_fn, np_fn, trans_a, trans_b, alpha): m, n, k = [ir.Expr(_) for _ in ( self.m, self.n, self.k, )] x_shape_expr = [k, m] if trans_a else [m, k] y_shape_expr = [n, k] if trans_b else [k, n] x = lang.Placeholder("float32", "x", x_shape_expr) y = lang.Placeholder("float32", "y", y_shape_expr) func_name = "test_" + fn_name z = cinn_fn(x.to_tensor(), y.to_tensor(), trans_a, trans_b, alpha) tensor_args = [x.to_tensor(), y.to_tensor()] for out in z: tensor_args.append(out) stages = create_stages(tensor_args) func = lang.lower(func_name, stages, tensor_args) print(func) builder = lang.Module.Builder("transform_module", self.target) builder.add_function(func) module = builder.build() self.compiler.build(module) fn = self.compiler.lookup(func_name) x_data, y_data, x_buf, y_buf, out_buf, *args = self.create_data( (self.m, self.n), trans_a, trans_b, alpha) fn(args) self.assertTrue( np.allclose( out_buf.numpy(), self.create_target_data(np_fn, x_data, y_data, trans_a, trans_b, alpha), atol=1e-4)) def create_target_data(self, np_target_fn, x_data, y_data, trans_a, trans_b, alpha): x_data = np.transpose(x_data) if trans_a else x_data y_data = np.transpose(y_data) if trans_b else y_data return np_target_fn(x_data, y_data) * alpha def create_data(self, output_shape, trans_a, trans_b, alpha=1): if not self.transform_data: if trans_a: x_data = np.around( np.random.randn(self.k, self.m).astype("float32"), 2) else: x_data = np.around( np.random.randn(self.m, self.k).astype("float32"), 2) if trans_b: y_data = np.around( np.random.randn(self.n, self.k).astype("float32"), 2) else: y_data = np.around( np.random.randn(self.k, self.n).astype("float32"), 2) x = runtime.cinn_buffer_t(x_data, runtime.cinn_x86_device) y = runtime.cinn_buffer_t(y_data, runtime.cinn_x86_device) out = runtime.cinn_buffer_t( np.zeros(output_shape).astype("float32"), runtime.cinn_x86_device) out1 = runtime.cinn_buffer_t( np.zeros(output_shape).astype("float32"), runtime.cinn_x86_device) self.transform_data = [ x_data, y_data, x, y, out, runtime.cinn_pod_value_t(x), runtime.cinn_pod_value_t(y), runtime.cinn_pod_value_t(out), runtime.cinn_pod_value_t(out1) ] return self.transform_data if __name__ == "__main__": unittest.main()