#!/usr/bin/env python3 # Copyright (c) 2021 CINN Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle as paddle import numpy as np import unittest import math import cinn from cinn import frontend from cinn import runtime from cinn import lang from cinn import framework from cinn import ir from cinn import common from cinn.poly import create_stages import logging from test_utils import SingleOpTester import pool_utils import conv2d_utils class OpTest_relu(SingleOpTester): def create_target_data(self, inputs_data, attrs): [X] = inputs_data return np.maximum(X, np.zeros(X.shape).astype("float32")) def test_op(self): attrs = framework.NodeAttr() self.to_test_op([[32]], [[32]], "relu", attrs) class OpTest_relu6(SingleOpTester): def create_target_data(self, inputs_data, attrs): [X] = inputs_data return np.minimum( np.maximum(X, np.zeros(np.array(X).shape).astype("float32")), 6) def test_op(self): attrs = framework.NodeAttr() self.to_test_op([[32, 32]], [[32, 32]], "relu6", attrs) class OpTest_conv2d_nchw(SingleOpTester): def init_testcase(self): self.input_size = [1, 3, 10, 10] self.groups = 1 assert np.mod(self.input_size[1], self.groups) == 0 f_c = self.input_size[1] // self.groups self.filter_size = [2, f_c, 2, 2] assert np.mod(self.filter_size[0], self.groups) == 0 self.data_format = "NCHW" self.attrs = framework.NodeAttr() self.padding = [1, 1] self.stride = [2, 2] self.dilation = [2, 2] self.attrs.set_attr("stride", self.stride) self.attrs.set_attr("padding", self.padding) self.attrs.set_attr("dilation", self.dilation) self.attrs.set_attr("groups", self.groups) self.attrs.set_attr("data_format", self.data_format) def create_target_data(self, inputs_data, attrs): return conv2d_utils.conv2d_native(inputs_data, self.input_size, self.filter_size, self.attrs, False) def test_op(self): self.init_testcase() self.to_test_op([self.input_size, self.filter_size], None, "conv2d", self.attrs, 0, True) class OpTest_conv2d_nchw_1(SingleOpTester): def init_testcase(self): self.input_size = [1, 3, 224, 224] self.groups = 1 assert np.mod(self.input_size[1], self.groups) == 0 f_c = self.input_size[1] // self.groups self.filter_size = [64, f_c, 7, 7] self.data_format = "NCHW" self.attrs = framework.NodeAttr() self.padding = [3, 3] self.stride = [2, 2] self.dilation = [1, 1] self.attrs.set_attr("stride", self.stride) self.attrs.set_attr("padding", self.padding) self.attrs.set_attr("dilation", self.dilation) self.attrs.set_attr("groups", self.groups) self.attrs.set_attr("data_format", self.data_format) def create_target_data(self, inputs_data, attrs): return conv2d_utils.conv2d_native(inputs_data, self.input_size, self.filter_size, self.attrs, False) def test_op(self): self.init_testcase() self.to_test_op([self.input_size, self.filter_size], None, "conv2d", self.attrs, 0, True) class OpTest_conv2d_nchw_group(SingleOpTester): def init_testcase(self): self.input_size = [2, 8, 10, 10] self.groups = 4 assert np.mod(self.input_size[1], self.groups) == 0 f_c = self.input_size[1] // self.groups self.filter_size = [16, f_c, 7, 7] self.data_format = "NCHW" self.attrs = framework.NodeAttr() self.padding = [1, 1] self.stride = [2, 2] self.dilation = [1, 1] self.attrs.set_attr("stride", self.stride) self.attrs.set_attr("padding", self.padding) self.attrs.set_attr("dilation", self.dilation) self.attrs.set_attr("groups", self.groups) self.attrs.set_attr("data_format", self.data_format) def create_target_data(self, inputs_data, attrs): return conv2d_utils.conv2d_native(inputs_data, self.input_size, self.filter_size, self.attrs, False) def test_op(self): self.init_testcase() self.to_test_op([self.input_size, self.filter_size], None, "conv2d", self.attrs, 0, True) class OpTest_conv2d_nchw_depthwise(SingleOpTester): def init_testcase(self): self.input_size = [2, 8, 10, 10] self.groups = 8 assert np.mod(self.input_size[1], self.groups) == 0 f_c = self.input_size[1] // self.groups self.filter_size = [16, f_c, 7, 7] self.data_format = "NCHW" self.attrs = framework.NodeAttr() self.padding = [1, 1] self.stride = [2, 2] self.dilation = [1, 1] self.attrs.set_attr("stride", self.stride) self.attrs.set_attr("padding", self.padding) self.attrs.set_attr("dilation", self.dilation) self.attrs.set_attr("groups", self.groups) self.attrs.set_attr("data_format", self.data_format) def create_target_data(self, inputs_data, attrs): return conv2d_utils.conv2d_native(inputs_data, self.input_size, self.filter_size, self.attrs, False) def test_op(self): self.init_testcase() self.to_test_op([self.input_size, self.filter_size], None, "conv2d", self.attrs, 0, True) class OpTest_conv2d_nhwc_group(SingleOpTester): def init_testcase(self): self.input_size = [2, 10, 10, 8] self.groups = 4 assert np.mod(self.input_size[3], self.groups) == 0 f_c = self.input_size[3] // self.groups self.filter_size = [16, f_c, 7, 7] self.data_format = "NHWC" self.attrs = framework.NodeAttr() self.padding = [2, 2] self.stride = [2, 2] self.dilation = [2, 2] self.attrs.set_attr("stride", self.stride) self.attrs.set_attr("padding", self.padding) self.attrs.set_attr("dilation", self.dilation) self.attrs.set_attr("groups", self.groups) self.attrs.set_attr("data_format", self.data_format) def create_target_data(self, inputs_data, attrs): return conv2d_utils.conv2d_native(inputs_data, self.input_size, self.filter_size, self.attrs, False) def test_op(self): self.init_testcase() self.to_test_op([self.input_size, self.filter_size], None, "conv2d", self.attrs, 0, True) class OpTest_conv2d_nhwc_depthwise(SingleOpTester): def init_testcase(self): self.input_size = [2, 10, 10, 8] self.groups = 8 assert np.mod(self.input_size[3], self.groups) == 0 f_c = self.input_size[3] // self.groups self.filter_size = [16, f_c, 7, 7] self.data_format = "NHWC" self.attrs = framework.NodeAttr() self.padding = [1, 1] self.stride = [2, 2] self.dilation = [1, 1] self.attrs.set_attr("stride", self.stride) self.attrs.set_attr("padding", self.padding) self.attrs.set_attr("dilation", self.dilation) self.attrs.set_attr("groups", self.groups) self.attrs.set_attr("data_format", self.data_format) def create_target_data(self, inputs_data, attrs): return conv2d_utils.conv2d_native(inputs_data, self.input_size, self.filter_size, self.attrs, False) def test_op(self): self.init_testcase() self.to_test_op([self.input_size, self.filter_size], None, "conv2d", self.attrs, 0, True) # test channel multiplier format class OpTest_depthwise_conv2d_nchw(SingleOpTester): def init_testcase(self): self.input_size = [2, 8, 10, 10] self.groups = self.input_size[1] assert np.mod(self.input_size[1], self.groups) == 0 channel_multiplier = 1 self.filter_size = [self.input_size[1], channel_multiplier, 7, 7] self.data_format = "NCHW" self.attrs = framework.NodeAttr() self.padding = [1, 1] self.stride = [2, 2] self.dilation = [1, 1] self.attrs.set_attr("stride", self.stride) self.attrs.set_attr("padding", self.padding) self.attrs.set_attr("dilation", self.dilation) self.attrs.set_attr("groups", self.groups) self.attrs.set_attr("data_format", self.data_format) def create_target_data(self, inputs_data, attrs): return conv2d_utils.conv2d_native(inputs_data, self.input_size, self.filter_size, self.attrs, True) def test_op(self): self.init_testcase() self.to_test_op([self.input_size, self.filter_size], None, "depthwise_conv2d", self.attrs, 0, True) # test channel multiplier format class OpTest_depthwise_conv2d_nhwc(SingleOpTester): def init_testcase(self): self.input_size = [2, 10, 10, 8] self.groups = self.input_size[3] assert np.mod(self.input_size[3], self.groups) == 0 channel_multiplier = 4 self.filter_size = [self.input_size[3], channel_multiplier, 7, 7] self.data_format = "NHWC" self.attrs = framework.NodeAttr() self.padding = [1, 1] self.stride = [2, 2] self.dilation = [1, 1] self.attrs.set_attr("stride", self.stride) self.attrs.set_attr("padding", self.padding) self.attrs.set_attr("dilation", self.dilation) self.attrs.set_attr("groups", self.groups) self.attrs.set_attr("data_format", self.data_format) def create_target_data(self, inputs_data, attrs): return conv2d_utils.conv2d_native(inputs_data, self.input_size, self.filter_size, self.attrs, True) def test_op(self): self.init_testcase() self.to_test_op([self.input_size, self.filter_size], None, "depthwise_conv2d", self.attrs, 0, True) class OpTest_pool1d(SingleOpTester): attrs = framework.NodeAttr() attrs.set_attr("kernel_size", [2]) attrs.set_attr("stride_size", [2]) attrs.set_attr("padding_size", [1, 1]) attrs.set_attr("pool_type", "max") attrs.set_attr("ceil_mode", False) attrs.set_attr("exclusive", True) attrs.set_attr("data_format", "NCW") def create_target_data(self, inputs_data, attrs): return pool_utils.pool1d(inputs_data[0], self.attrs) def test_op(self): input_shape = [1, 3, 8] self.to_test_op([input_shape], None, "pool1d", self.attrs) class OpTest_pool1d_1(SingleOpTester): attrs = framework.NodeAttr() attrs.set_attr("kernel_size", [2]) attrs.set_attr("stride_size", [2]) attrs.set_attr("padding_size", [2, 3]) attrs.set_attr("pool_type", "avg") attrs.set_attr("ceil_mode", False) attrs.set_attr("exclusive", True) attrs.set_attr("data_format", "NCW") def create_target_data(self, inputs_data, attrs): return pool_utils.pool1d(inputs_data[0], self.attrs) def test_op(self): input_shape = [1, 3, 8] self.to_test_op([input_shape], None, "pool1d", self.attrs) class OpTest_pool1d_2(SingleOpTester): attrs = framework.NodeAttr() attrs.set_attr("kernel_size", [2]) attrs.set_attr("stride_size", [3]) attrs.set_attr("padding_size", [4, 5]) attrs.set_attr("pool_type", "avg") attrs.set_attr("ceil_mode", True) attrs.set_attr("exclusive", False) attrs.set_attr("data_format", "NWC") def create_target_data(self, inputs_data, attrs): return pool_utils.pool1d(inputs_data[0], self.attrs) def test_op(self): input_shape = [1, 8, 3] self.to_test_op([input_shape], None, "pool1d", self.attrs) class OpTest_pool2d(SingleOpTester): attrs = framework.NodeAttr() attrs.set_attr("kernel_size", [2, 2]) attrs.set_attr("stride_size", [2, 2]) attrs.set_attr("padding_size", [1, 1, 1, 1]) attrs.set_attr("pool_type", "max") attrs.set_attr("ceil_mode", False) attrs.set_attr("exclusive", True) attrs.set_attr("data_format", "NCHW") def create_target_data(self, inputs_data, attrs): return pool_utils.pool2d(inputs_data[0], self.attrs) def test_op(self): input_shape = [1, 3, 8, 8] self.to_test_op([input_shape], None, "pool2d", self.attrs) class OpTest_pool2d_1(SingleOpTester): attrs = framework.NodeAttr() attrs.set_attr("kernel_size", [2, 2]) attrs.set_attr("stride_size", [2, 2]) attrs.set_attr("padding_size", [2, 3, 4, 5]) attrs.set_attr("pool_type", "avg") attrs.set_attr("ceil_mode", False) attrs.set_attr("exclusive", True) attrs.set_attr("data_format", "NCHW") def create_target_data(self, inputs_data, attrs): return pool_utils.pool2d(inputs_data[0], self.attrs) def test_op(self): input_shape = [1, 3, 8, 8] self.to_test_op([input_shape], None, "pool2d", self.attrs) class OpTest_pool2d_2(SingleOpTester): attrs = framework.NodeAttr() attrs.set_attr("kernel_size", [2, 2]) attrs.set_attr("stride_size", [3, 3]) attrs.set_attr("padding_size", [2, 3, 4, 5]) attrs.set_attr("pool_type", "avg") attrs.set_attr("ceil_mode", True) attrs.set_attr("exclusive", False) attrs.set_attr("data_format", "NHWC") def create_target_data(self, inputs_data, attrs): return pool_utils.pool2d(inputs_data[0], self.attrs) def test_op(self): input_shape = [1, 8, 8, 3] self.to_test_op([input_shape], None, "pool2d", self.attrs) # The following test is temporarily broken # class OpTest_pool3d(SingleOpTester): # attrs = framework.NodeAttr() # attrs.attr_store = { # "kernel_size": [2, 2, 2], # "stride_size": [2, 2, 2], # "padding_size": [1, 2, 3, 4, 5, 6], # "pool_type": "max", # "ceil_mode": False, # "exclusive": True, # "data_format": "NCDHW" # } # def create_target_data(self, inputs_data, attrs): # return pool_utils.pool3d(inputs_data[0], self.attrs) # def test_op(self): # input_shape = [2, 3, 8, 8, 8] # self.to_test_op([input_shape], None, "pool3d", self.attrs) class OpTest_pool3d_1(SingleOpTester): attrs = framework.NodeAttr() attrs.set_attr("kernel_size", [2, 2, 2]) attrs.set_attr("stride_size", [2, 2, 2]) attrs.set_attr("padding_size", [1, 1, 1, 1, 1, 1]) attrs.set_attr("pool_type", "avg") attrs.set_attr("ceil_mode", False) attrs.set_attr("exclusive", True) attrs.set_attr("data_format", "NCDHW") def create_target_data(self, inputs_data, attrs): return pool_utils.pool3d(inputs_data[0], self.attrs) def test_op(self): input_shape = [1, 3, 8, 8, 8] self.to_test_op([input_shape], None, "pool3d", self.attrs) class OpTest_pool3d_2(SingleOpTester): attrs = framework.NodeAttr() attrs.set_attr("kernel_size", [2, 2, 2]) attrs.set_attr("stride_size", [2, 2, 2]) attrs.set_attr("padding_size", [1, 2, 3, 4, 5, 6]) attrs.set_attr("pool_type", "avg") attrs.set_attr("ceil_mode", True) attrs.set_attr("exclusive", False) attrs.set_attr("data_format", "NDHWC") def create_target_data(self, inputs_data, attrs): return pool_utils.pool3d(inputs_data[0], self.attrs) def test_op(self): input_shape = [1, 8, 8, 8, 3] self.to_test_op([input_shape], None, "pool3d", self.attrs) class OpTest_batchnorm(SingleOpTester): def create_target_data(self, inputs_data, attrs): [X, Scale, Bias, Mean, Variance] = inputs_data c = X.shape[1] for i in range(0, c): X[:, i, :, :] = (X[:, i, :, :] - Mean[i]) / math.sqrt( Variance[i] + 0.00001) * Scale[i] + Bias[i] return X def test_op(self): attrs = framework.NodeAttr() self.to_test_op([[1, 64, 112, 112], [64], [64], [64], [64]], [[1, 64, 112, 112]], "batch_norm", attrs) class OpTest_softmax_0(SingleOpTester): def create_target_data(self, inputs_data, attrs): [X] = inputs_data Y = np.zeros(X.shape).astype("float32") for i in range(0, Y.shape[1]): Y[:, i, :] = np.exp(X[:, i, :]) / np.sum( np.exp(X), axis=1, keepdims=True)[:, 0, :] return Y def test_op(self): attrs = framework.NodeAttr() attrs.set_attr("axis", 1) self.to_test_op([[12, 224, 224]], [[12, 224, 224], [12, 224, 224]], "softmax", attrs, 0) class OpTest_softmax_1(SingleOpTester): def create_target_data(self, inputs_data, attrs): [X] = inputs_data Y = np.zeros(X.shape).astype("float32") for i in range(0, Y.shape[2]): Y[:, :, i] = np.exp(X[:, :, i]) / np.sum( np.exp(X), axis=2, keepdims=True)[:, :, 0] return Y def test_op(self): attrs = framework.NodeAttr() attrs.set_attr("axis", -1) self.to_test_op([[12, 224, 224]], [[12, 224, 224], [12, 224, 224]], "softmax", attrs, 0) class OpTest_softmax_2(SingleOpTester): def create_target_data(self, inputs_data, attrs): [X] = inputs_data Y = np.zeros(X.shape).astype("float32") for i in range(0, Y.shape[0]): Y[i, :, :] = np.exp(X[i, :, :]) / np.sum( np.exp(X), axis=0, keepdims=True)[0, :, :] return Y def test_op(self): attrs = framework.NodeAttr() attrs.set_attr("axis", 0) self.to_test_op([[12, 224, 224]], [[12, 224, 224], [12, 224, 224]], "softmax", attrs, 0) class OpTest_sigmoid(SingleOpTester): def create_target_data(self, inputs_data, attrs): x = np.array(inputs_data[0]) y = 1 / (1 + np.exp(-x)) return y def test_op(self): attrs = framework.NodeAttr() self.to_test_op([[3, 224, 224]], [[3, 224, 224]], "sigmoid", attrs) class OpTest_slice_0(SingleOpTester): def create_target_data(self, inputs_data, attrs): [X] = inputs_data Y = X[:, 0:2, 2:4, :] return Y def test_op(self): attrs = framework.NodeAttr() attrs.set_attr("axes", [0, 1, 2]) attrs.set_attr("starts", [-3, 0, 2]) attrs.set_attr("ends", [3, 2, 4]) self.to_test_op([[3, 4, 5, 6]], [[3, 2, 2, 6]], "slice", attrs) class OpTest_slice_1(SingleOpTester): def create_target_data(self, inputs_data, attrs): [X] = inputs_data Y = X[:, 0:3, 1:2, 2:4] return Y def test_op(self): attrs = framework.NodeAttr() attrs.set_attr("axes", [1, 2, 3]) attrs.set_attr("starts", [0, 1, 2]) attrs.set_attr("ends", [3, 2, 4]) self.to_test_op([[3, 4, 5, 6]], [[3, 3, 1, 2]], "slice", attrs) class OpTest_dropout_infer_0(SingleOpTester): def init_testcase(self): self.attrs = framework.NodeAttr() self.attrs.set_attr("dropout_prob", 0.2) self.attrs.set_attr("dropout_implementation", "downgrade_in_infer") def create_target_data(self, inputs_data, attrs): [X] = inputs_data assert "dropout_implementation" in self.attrs.attr_store if self.attrs.attr_store[ "dropout_implementation"] == "downgrade_in_infer": return X * (1 - self.attrs.attr_store["dropout_prob"]) else: return X def test_op(self): self.init_testcase() self.to_test_op([[2, 1280, 2, 2]], [[2, 1280, 2, 2]], "dropout_infer", self.attrs) class OpTest_dropout_infer_1(SingleOpTester): def init_testcase(self): self.attrs = framework.NodeAttr() self.attrs.set_attr("dropout_prob", 0.2) self.attrs.set_attr("dropout_implementation", "upscale_in_train") def create_target_data(self, inputs_data, attrs): [X] = inputs_data assert "dropout_implementation" in self.attrs.attr_store if self.attrs.attr_store[ "dropout_implementation"] == "downgrade_in_infer": return X * (1 - self.attrs.attr_store["dropout_prob"]) else: return X def test_op(self): self.init_testcase() self.to_test_op([[2, 1280, 2, 2]], [[2, 1280, 2, 2]], "dropout_infer", self.attrs) if __name__ == "__main__": unittest.main()