// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/operator.h" #include "paddle/fluid/lite/core/kernel.h" #include "paddle/fluid/lite/core/op_lite.h" #include "paddle/fluid/lite/core/op_registry.h" #include "paddle/fluid/lite/core/type_system.h" #include "paddle/fluid/lite/operators/fc_op.h" namespace paddle { namespace lite { namespace kernels { namespace x86 { template void fc_compute_eigen(const T* x, int x_w, int x_h, // const T* w, int w_w, int w_h, // const T* b, // T* out) { using matrix_t = Eigen::Matrix; Eigen::Map X(x, x_h, x_w); Eigen::Map W(w, w_h, w_w); Eigen::Map Out(out, x_h, w_h); Out = X * W.transpose(); if (b) { Eigen::Map> B(b, w_h); Out = Out.array().rowwise() + B.transpose().array(); } } template __attribute__((optimize("unroll-loops"))) // T dot(const T* x, const T* y, int dim) { T out{}; for (int i = 0; i < dim; i++) { out += x[i] * y[i]; } return out; } template void fc_compute_naive(const T* x, int x_w, int x_h, // const T* w, int w_w, int w_h, // const T* b, // T* out) { CHECK_EQ(x_w, w_w); // out shape: (x_h, w_w) memset(out, 0, x_h * w_h * sizeof(T)); for (int r = 0; r < x_h; r++) { for (int c = 0; c < w_h; c++) { out[r * w_h + c] = dot(&x[r * x_w], &w[c * w_w], w_w) + b[c]; } } } template class FcCompute : public KernelLite { public: using param_t = operators::FcParam; void Run() override { auto& param = *param_.get_mutable(); CHECK_GE(param.input->dims().size(), 2UL); CHECK_EQ(param.output->dims().size(), 2UL); fc_compute_eigen( param.input->data(), // x param.input->dims().Slice(0, param.in_num_col_dims).production(), param.input->dims() .Slice(param.in_num_col_dims, param.input->dims().size()) .production(), param.w->data(), // w param.w->dims()[1], // w_w param.w->dims()[0], // w_h param.bias->data(), // b param.output->mutable_data()); } virtual ~FcCompute() = default; }; } // namespace x86 } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL(fc, kX86, kFloat, kNCHW, paddle::lite::kernels::x86::FcCompute, def) .BindInput("Input", {LiteType::GetTensorTy(TARGET(kX86))}) .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kX86))}) .BindInput("W", {LiteType::GetTensorTy(TARGET(kX86))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kX86))}) .Finalize();