// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/gather_tree_kernel.h" #include #include "paddle/phi/core/enforce.h" #include "paddle/phi/core/kernel_registry.h" namespace phi { template __global__ void GatherTree(const T *ids_data, const T *parents_data, T *out_data, const int64_t max_length, const int64_t batch_size, const int64_t beam_size) { CUDA_KERNEL_LOOP(i, batch_size * beam_size) { int batch = i / beam_size; int beam = i % beam_size; auto idx = (max_length - 1) * batch_size * beam_size + batch * beam_size + beam; out_data[idx] = ids_data[idx]; auto parent = parents_data[idx]; for (int step = max_length - 2; step >= 0; step--) { PADDLE_ENFORCE((parent < beam_size), "The parents must be less than beam size, but recieved" "parents %ld is greater than or equal to beam size %ld. ", parent, beam_size); idx = step * batch_size * beam_size + batch * beam_size; out_data[idx + beam] = ids_data[idx + parent]; parent = parents_data[idx + parent]; } } } template void GatherTreeKernel(const Context &dev_ctx, const DenseTensor &ids, const DenseTensor &parents, DenseTensor *out) { const auto *ids_data = ids.data(); const auto *parents_data = parents.data(); T *out_data = dev_ctx.template Alloc(out); PADDLE_ENFORCE_NOT_NULL(ids_data, phi::errors::InvalidArgument( "Input(Ids) of gather_tree should not be null.")); PADDLE_ENFORCE_NOT_NULL( parents_data, phi::errors::InvalidArgument( "Input(Parents) of gather_tree should not be null.")); auto &ids_dims = ids.dims(); int64_t max_length = ids_dims[0]; int64_t batch_size = ids_dims[1]; int64_t beam_size = ids_dims[2]; const int block = 512; int max_threads = std::min(static_cast(dev_ctx.GetMaxPhysicalThreadCount()), batch_size * beam_size); const int grid = std::max(max_threads / block, 1); GatherTree<<>>( ids_data, parents_data, out_data, max_length, batch_size, beam_size); } } // namespace phi PD_REGISTER_KERNEL( gather_tree, GPU, ALL_LAYOUT, phi::GatherTreeKernel, int, int64_t) {}