// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/operators/optimizers/merged_momentum_op.h" #include "paddle/fluid/operators/mlu/mlu_baseop.h" namespace paddle { namespace operators { template class MLUMergedMomentumOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto params = ctx.MultiInput("Param"); auto params_out = ctx.MultiOutput("ParamOut"); size_t n = params.size(); PADDLE_ENFORCE_EQ(n, params_out.size(), platform::errors::InvalidArgument( "The size of Output(ParamOut) must be equal to " "Input(Param), but got the size of Output(ParamOut) " "is %d, the size of Input(Param) is %d.", params_out.size(), n)); for (size_t i = 0; i < n; ++i) { PADDLE_ENFORCE_EQ(params[i], params_out[i], platform::errors::InvalidArgument( "The size of Input(Param) and Output(ParamOut) " "must be the same Tensors.")); } auto grads = ctx.MultiInput("Grad"); PADDLE_ENFORCE_EQ( n, grads.size(), platform::errors::InvalidArgument( "The size of Input(Grad) must be equal to Input(Param), but got " "the size of Input(Grad) is %d, the size of Input(Param) is %d.", grads.size(), n)); auto velocitys = ctx.MultiInput("Velocity"); PADDLE_ENFORCE_EQ(n, velocitys.size(), platform::errors::InvalidArgument( "The size of Input(Velocity) must be equal to " "Input(Param), but got the size of Input(Velocity) " "is %d, the size of Input(Param) is %d.", velocitys.size(), n)); auto velocitys_out = ctx.MultiOutput("VelocityOut"); PADDLE_ENFORCE_EQ( n, velocitys_out.size(), platform::errors::InvalidArgument( "The size of Output(VelocityOut) must be " "equal to Input(Param), but got the size of Output(VelocityOut) is " "%d, the size of Input(Param) is %d.", velocitys_out.size(), n)); for (size_t i = 0; i < n; ++i) { PADDLE_ENFORCE_EQ(velocitys[i], velocitys_out[i], platform::errors::InvalidArgument( "Input(Velocity) and Output(VelocityOut) must be " "the same Tensors.")); } auto mu = ctx.Attr("mu"); auto lrs = ctx.MultiInput("LearningRate"); if (lrs.size() != 1) { PADDLE_ENFORCE_EQ( n, lrs.size(), platform::errors::InvalidArgument( "If the size of Input(LearningRate) is not 1, the size of " "Input(LearningRate) must be " "equal to Input(Param), but got the size of Input(LearningRate) " "is %d, the size of Input(Param) is %d.", lrs.size(), n)); } auto use_nesterov = ctx.Attr("use_nesterov"); auto regularization_methods = ctx.Attr>("regularization_method"); auto regularization_coeffs = ctx.Attr>("regularization_coeff"); if (regularization_methods.size() != 0) { PADDLE_ENFORCE_EQ( n, regularization_methods.size(), platform::errors::InvalidArgument( "The size of Attr(regularization_method) must be equal " "to Input(Param), but got the size of " "Attr(regularization_method) is %d, the size of Input(Param) is " "%d.", regularization_methods.size(), n)); PADDLE_ENFORCE_EQ( n, regularization_coeffs.size(), platform::errors::InvalidArgument( "The size of Attr(regularization_coeff) must be equal " "to Input(Param), but got the size of Attr(regularization_coeff) " "is %d, the size of Input(Param) is %d.", regularization_coeffs.size(), n)); } VLOG(5) << "use_nesterov: " << use_nesterov << ", regularization_methods.size(): " << regularization_methods.size() << ", regularization_coeffs.size(): " << regularization_coeffs.size(); auto& dev_ctx = ctx.template device_context(); Tensor mu_tensor = ctx.AllocateTmpTensor({1}, dev_ctx); MLUCnnlTensorDesc mu_tensor_desc(mu_tensor); MLUCnnl::Fill(ctx, mu, mu_tensor_desc.get(), GetBasePtr(&mu_tensor)); for (size_t idx = 0; idx < n; ++idx) { RegularizationType regularization_flag = regularization_methods.size() > 0 && regularization_methods[idx] == "l2_decay" ? RegularizationType::kL2DECAY : RegularizationType::kNONE; T regularization_coeff = static_cast(0.0); if (regularization_coeffs.size() != 0) { regularization_coeff = static_cast(regularization_coeffs[idx]); } auto learning_rate = lrs.size() > 1 ? lrs[idx] : lrs[0]; auto param_out = params_out[idx]; auto velocity_out = velocitys_out[idx]; auto grad = grads[idx]; Tensor regularized_grad; MLUCnnlTensorDesc param_desc(*param_out); if (regularization_flag == RegularizationType::kL2DECAY) { regularized_grad = ctx.AllocateTmpTensor( param_out->dims(), dev_ctx); MLUCnnlOpTensorDesc op_tensor_desc( CNNL_OP_TENSOR_ADD, ToCnnlDataType(), CNNL_NOT_PROPAGATE_NAN); MLUCnnl::OpTensor(ctx, op_tensor_desc.get(), param_desc.get(), GetBasePtr(param_out), param_desc.get(), GetBasePtr(grad), param_desc.get(), GetBasePtr(®ularized_grad), ToCnnlDataType(), regularization_coeff); } else { regularized_grad = *grad; } MLUCnnl::ApplyMomentum(ctx, param_desc.get(), GetBasePtr(®ularized_grad), use_nesterov, GetBasePtr(learning_rate), GetBasePtr(&mu_tensor), GetBasePtr(param_out), GetBasePtr(velocity_out)); } } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; namespace plat = paddle::platform; REGISTER_OP_MLU_KERNEL(merged_momentum, ops::MLUMergedMomentumOpKernel, ops::MLUMergedMomentumOpKernel);