# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __all__ = ['PairwiseDistance'] import numpy as np import paddle from ...fluid.dygraph import layers from ...fluid.framework import core, in_dygraph_mode from ...fluid.data_feeder import check_variable_and_dtype, check_type from ...fluid.layer_helper import LayerHelper class PairwiseDistance(layers.Layer): """ This operator computes the pairwise distance between two vectors. The distance is calculated by p-oreder norm: .. math:: \Vert x \Vert _p = \left( \sum_{i=1}^n \vert x_i \vert ^ p \right) ^ {1/p}. Parameters: p (float): The order of norm. The default value is 2. epsilon (float, optional): Add small value to avoid division by zero, default value is 1e-6. keepdim (bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result tensor is one dimension less than the result of ``'x-y'`` unless :attr:`keepdim` is True, default value is False. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Shape: x: :math:`[N, D]` where `D` is the dimension of vector, available dtype is float32, float64. y: :math:`[N, D]`, y have the same shape and dtype as x. out: :math:`[N]`. If :attr:`keepdim` is ``True``, the out shape is :math:`[N, 1]`. The same dtype as input tensor. Examples: .. code-block:: python import paddle import numpy as np paddle.disable_static() x_np = np.array([[1., 3.], [3., 5.]]).astype(np.float64) y_np = np.array([[5., 6.], [7., 8.]]).astype(np.float64) x = paddle.to_tensor(x_np) y = paddle.to_tensor(y_np) dist = paddle.nn.PairwiseDistance() distance = dist(x, y) print(distance.numpy()) # [5. 5.] """ def __init__(self, p=2., epsilon=1e-6, keepdim=False, name=None): super(PairwiseDistance, self).__init__() self.p = p self.epsilon = epsilon self.keepdim = keepdim self.name = name check_type(self.p, 'porder', (float, int), 'PairwiseDistance') check_type(self.epsilon, 'epsilon', (float), 'PairwiseDistance') check_type(self.keepdim, 'keepdim', (bool), 'PairwiseDistance') def forward(self, x, y): if in_dygraph_mode(): sub = core.ops.elementwise_sub(x, y) return core.ops.p_norm(sub, 'axis', 1, 'porder', self.p, 'keepdim', self.keepdim, 'epsilon', self.epsilon) check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'PairwiseDistance') check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'PairwiseDistance') sub = paddle.elementwise_sub(x, y) helper = LayerHelper("PairwiseDistance", name=self.name) attrs = { 'axis': 1, 'porder': self.p, 'keepdim': self.keepdim, 'epsilon': self.epsilon, } out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type='p_norm', inputs={'X': sub}, outputs={'Out': out}, attrs=attrs) return out