# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from functools import partial from typing import Any, Dict, List import numpy as np from program_config import ProgramConfig, TensorConfig from trt_layer_auto_scan_test import TrtLayerAutoScanTest import paddle.inference as paddle_infer class TrtConvertActivationTest(TrtLayerAutoScanTest): def is_program_valid(self, program_config: ProgramConfig) -> bool: ver = paddle_infer.get_trt_compile_version() if ver[0] * 1000 + ver[1] * 100 + ver[0] * 10 < 8200: if program_config.ops[0].type == "round": return False return True def sample_program_configs(self): def generate_input1(dims, batch, attrs: List[Dict[str, Any]]): if dims == 0: return np.random.random([]).astype(np.float32) elif dims == 1: return np.random.random([32]).astype(np.float32) else: return np.random.random([batch, 3, 32, 32]).astype(np.float32) for dims in [0, 1, 4]: for batch in [1, 4]: for op_type in [ "relu", "sigmoid", "relu6", "elu", "selu", "silu", "softsign", "stanh", "thresholded_relu", "celu", "logsigmoid", "tanh_shrink", "softplus", "hard_swish", "hard_sigmoid", "leaky_relu", ]: # few samples to reduce time # for beta in [-0.2, 0.5, 0.67, 3]: # for alpha in [-0.2, 0.5, 0.67, 3]: for beta in [0.67]: for alpha in [0.67]: self.dims = dims dics = [{}] if op_type == "celu": dics = [{"alpha": 1.0}] if op_type == "elu": dics = [{"alpha": alpha}] if op_type == "selu": dics = [{"alpha": beta, "scale": alpha}] if op_type == "stanh": dics = [{"scale_a": beta, "scale_b": alpha}] if op_type == "thresholded_relu": dics = [{"threshold": alpha}] if op_type == "softplus": dics = [{"beta": beta}] if op_type == "hard_swish": dics = [ { "threshold": 6.0, "scale": 6.0, "offset": 3.0, } ] if op_type == "hard_sigmoid": dics = [{"slope": beta, "offset": alpha}] if op_type == "leaky_relu": dics = [{"alpha": alpha}] ops_config = [ { "op_type": op_type, "op_inputs": {"X": ["input_data"]}, "op_outputs": {"Out": ["output_data"]}, "op_attrs": dics[0], } ] ops = self.generate_op_config(ops_config) program_config = ProgramConfig( ops=ops, weights={}, inputs={ "input_data": TensorConfig( data_gen=partial( generate_input1, dims, batch, dics ) ) }, outputs=["output_data"], ) yield program_config def sample_predictor_configs( self, program_config ) -> (paddle_infer.Config, List[int], float): def generate_dynamic_shape(attrs): if self.dims == 0: self.dynamic_shape.min_input_shape = {"input_data": []} self.dynamic_shape.max_input_shape = {"input_data": []} self.dynamic_shape.opt_input_shape = {"input_data": []} elif self.dims == 1: self.dynamic_shape.min_input_shape = {"input_data": [1]} self.dynamic_shape.max_input_shape = {"input_data": [64]} self.dynamic_shape.opt_input_shape = {"input_data": [32]} elif self.dims == 2: self.dynamic_shape.min_input_shape = {"input_data": [1, 16]} self.dynamic_shape.max_input_shape = {"input_data": [4, 32]} self.dynamic_shape.opt_input_shape = {"input_data": [3, 32]} elif self.dims == 3: self.dynamic_shape.min_input_shape = {"input_data": [1, 16, 16]} self.dynamic_shape.max_input_shape = {"input_data": [4, 32, 32]} self.dynamic_shape.opt_input_shape = {"input_data": [3, 32, 32]} else: self.dynamic_shape.min_input_shape = { "input_data": [1, 3, 16, 16] } self.dynamic_shape.max_input_shape = { "input_data": [4, 3, 32, 32] } self.dynamic_shape.opt_input_shape = { "input_data": [1, 3, 32, 32] } def clear_dynamic_shape(): self.dynamic_shape.min_input_shape = {} self.dynamic_shape.max_input_shape = {} self.dynamic_shape.opt_input_shape = {} def generate_trt_nodes_num(attrs, dynamic_shape): if not dynamic_shape and (self.dims == 1 or self.dims == 0): return 0, 3 runtime_version = paddle_infer.get_trt_runtime_version() if ( runtime_version[0] * 1000 + runtime_version[1] * 100 + runtime_version[2] * 10 < 8600 and self.dims == 0 ) and program_config.ops[0].type in [ "celu", "logsigmoid", "tanh_shrink", ]: return 0, 3 return 1, 2 attrs = [ program_config.ops[i].attrs for i in range(len(program_config.ops)) ] # for static_shape clear_dynamic_shape() self.trt_param.precision = paddle_infer.PrecisionType.Float32 yield self.create_inference_config(), generate_trt_nodes_num( attrs, False ), 1e-5 self.trt_param.precision = paddle_infer.PrecisionType.Half yield self.create_inference_config(), generate_trt_nodes_num( attrs, False ), 1e-3 # for dynamic_shape generate_dynamic_shape(attrs) self.trt_param.precision = paddle_infer.PrecisionType.Float32 yield self.create_inference_config(), generate_trt_nodes_num( attrs, True ), 1e-5 self.trt_param.precision = paddle_infer.PrecisionType.Half yield self.create_inference_config(), generate_trt_nodes_num( attrs, True ), 1e-3 def test(self): self.run_test() if __name__ == "__main__": unittest.main()