/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include "paddle/fluid/operators/math/jit_kernel_impl.h" #include "paddle/fluid/platform/enforce.h" namespace paddle { namespace operators { namespace math { namespace jitkernel { namespace refer { /* Refer code only focus on correctness */ template void VMul(const T* x, const T* y, T* z, int n) { for (int i = 0; i < n; ++i) { z[i] = x[i] * y[i]; } } template void VAdd(const T* x, const T* y, T* z, int n) { for (int i = 0; i < n; ++i) { z[i] = x[i] + y[i]; } } template void VAddRelu(const T* x, const T* y, T* z, int n) { for (int i = 0; i < n; ++i) { z[i] = x[i] + y[i]; z[i] = z[i] > 0 ? z[i] : 0; } } template void VScal(const T* a, const T* x, T* y, int n) { for (int i = 0; i < n; ++i) { y[i] = a[0] * x[i]; } } template void VAddBias(const T* a, const T* x, T* y, int n) { for (int i = 0; i < n; ++i) { y[i] = a[0] + x[i]; } } template void VRelu(const T* x, T* y, int n) { for (int i = 0; i < n; ++i) { y[i] = x[i] > 0 ? x[i] : 0; } } template inline void VIdentity(const T* x, T* y, int n) {} template void VExp(const T* x, T* y, int n) { for (int i = 0; i < n; ++i) { y[i] = std::exp(x[i]); } } template void VSigmoid(const T* x, T* y, int n) { // y = 1 / (1 + e^-x) const T min = SIGMOID_THRESHOLD_MIN; const T max = SIGMOID_THRESHOLD_MAX; for (int i = 0; i < n; ++i) { T tmp = (x[i] < min) ? min : ((x[i] > max) ? max : x[i]); y[i] = static_cast(1) / (static_cast(1) + std::exp(-tmp)); } } template void VTanh(const T* x, T* y, int n) { // y = 2 * sigmoid(2x) - 1 for (int i = 0; i < n; ++i) { y[i] = static_cast(2) * x[i]; } VSigmoid(y, y, n); for (int i = 0; i < n; ++i) { y[i] = static_cast(2) * y[i] - static_cast(1); } } template void (*getActFunc(const std::string& type))(const T*, T*, int) { // NOLINT if (type == "sigmoid") { return VSigmoid; } else if (type == "relu") { return VRelu; } else if (type == "tanh") { return VTanh; } else if (type == "identity" || type == "") { return VIdentity; } PADDLE_THROW("Not support type: %s", type); return nullptr; } // compute ct and ht template void LSTMCtHt(lstm_t* step, const lstm_attr_t* attr) { T* gates = reinterpret_cast(step->gates); const T* ct_1 = reinterpret_cast(step->ct_1); T* ct = reinterpret_cast(step->ct); T* ht = reinterpret_cast(step->ht); const T* wp = reinterpret_cast(step->wp); T* checked = reinterpret_cast(step->checked); auto act_gate = getActFunc(attr->act_gate); auto act_cand = getActFunc(attr->act_cand); auto act_cell = getActFunc(attr->act_cell); int d = attr->d; int d2 = d * 2; int d3 = d * 3; // gates: W_ch, W_ih, W_fh, W_oh if (attr->use_peephole) { VMul(wp, ct_1, checked, d); VMul(wp + d, ct_1, checked + d, d); VAdd(checked, gates + d, gates + d, d2); act_gate(gates + d, gates + d, d2); } else { act_gate(gates + d, gates + d, d3); } // C_t = C_t-1 * fgated + cand_gated * igated act_cand(gates, gates, d); VMul(gates, gates + d, gates + d, d); VMul(ct_1, gates + d2, gates + d2, d); VAdd(gates + d, gates + d2, ct, d); if (attr->use_peephole) { // get ogated VMul(wp + d2, ct, gates + d, d); VAdd(gates + d, gates + d3, gates + d3, d); act_gate(gates + d3, gates + d3, d); } // H_t = act_cell(C_t) * ogated act_cell(ct, gates + d2, d); VMul(gates + d2, gates + d3, ht, d); } // compute c1 and h1 without c0 or h0 template void LSTMC1H1(lstm_t* step, const lstm_attr_t* attr) { T* gates = reinterpret_cast(step->gates); T* ct = reinterpret_cast(step->ct); T* ht = reinterpret_cast(step->ht); auto act_gate = getActFunc(attr->act_gate); auto act_cand = getActFunc(attr->act_cand); auto act_cell = getActFunc(attr->act_cell); int d = attr->d; int d2 = d * 2; int d3 = d * 3; /* C_t = igated * cgated*/ act_gate(gates + d, gates + d, d); act_cand(gates, gates, d); VMul(gates, gates + d, ct, d); if (attr->use_peephole) { // get outgated, put W_oc * C_t on igated const T* wp = reinterpret_cast(step->wp); VMul(wp + d2, ct, gates + d, d); VAdd(gates + d, gates + d3, gates + d3, d); } /* H_t = act_cell(C_t) * ogated */ act_gate(gates + d3, gates + d3, d); act_cell(ct, gates + d2, d); VMul(gates + d2, gates + d3, ht, d); } // compute h1 without h0 template void GRUH1(gru_t* step, const gru_attr_t* attr) { T* gates = reinterpret_cast(step->gates); T* ht = reinterpret_cast(step->ht); auto act_gate = getActFunc(attr->act_gate); auto act_cand = getActFunc(attr->act_cand); int d = attr->d; int d2 = d * 2; act_gate(gates, gates, d); act_cand(gates + d2, gates + d2, d); VMul(gates, gates + d2, ht, d); } // compute the first part of GRU: ht = act_gate(r) * ht_1 template void GRUHtPart1(gru_t* step, const gru_attr_t* attr) { // W: {W_update, W_reset; W_state} T* gates = reinterpret_cast(step->gates); T* ht = reinterpret_cast(step->ht); const T* ht_1 = reinterpret_cast(step->ht_1); auto act_gate = getActFunc(attr->act_gate); act_gate(gates + attr->d, gates + attr->d, attr->d); VMul(ht_1, gates + attr->d, ht, attr->d); } // compute the second part of GRU: // ht = act_gate(u) * act_cand(s) + (1-act_gate(u)) * ht_1 template void GRUHtPart2(gru_t* step, const gru_attr_t* attr) { T* gates = reinterpret_cast(step->gates); T* ht = reinterpret_cast(step->ht); const T* ht_1 = reinterpret_cast(step->ht_1); auto act_gate = getActFunc(attr->act_gate); auto act_cand = getActFunc(attr->act_cand); int d = attr->d; T* y = gates + d * 2; act_gate(gates, gates, d); act_cand(y, y, d); // out = zt*ht~ + (1-zt)*ht_1 for (int i = 0; i < d; ++i) { ht[i] = gates[i] * y[i] + (static_cast(1) - gates[i]) * ht_1[i]; } } } // namespace refer } // namespace jitkernel } // namespace math } // namespace operators } // namespace paddle