Neural Networks¶
Base¶
Functions
-
void
hl_shrink_col2feature
(const real *dataCol, size_t channels, size_t height, size_t width, size_t blockH, size_t blockW, size_t strideH, size_t strideW, size_t paddingH, size_t paddingW, size_t outputH, size_t outputW, real *dataIm, real alpha = 1.0f, real beta = 0.0f)¶ Shrink column to feature.
- Parameters
dataCol
-expand data.
channels
-number of channel.
height
-image height.
width
-image width.
blockH
-filter height.
blockW
-filter width.
strideH
-stride height.
strideW
-stride width.
paddingH
-padding height.
paddingW
-padding width.
outputH
-output height.
outputW
-output width.
dataIm
-output image data.
alpha
-beta
-
-
void
hl_expand_feature2col
(const real *dataIm, size_t channels, size_t height, size_t width, size_t blockH, size_t blockW, size_t strideH, size_t strideW, size_t paddingH, size_t paddingW, size_t outputH, size_t outputW, real *dataCol)¶ Expand feature to column.
- Parameters
dataIm
-input image data.
channels
-number of channel.
height
-image height.
width
-image width.
blockH
-filter height.
blockW
-filter width.
strideH
-stride height.
strideW
-stride width.
paddingH
-padding height.
paddingW
-padding width.
outputH
-output height.
outputW
-output width.
dataCol
-expand data.
-
void
hl_maxpool_forward
(int frameCnt, const real *inputData, int channels, int height, int width, int pooledH, int pooledW, int sizeX, int stride, int start, real *tgtData)¶ Maximum pool forward.
- Parameters
frameCnt
-batch size of input image.
inputData
-input data.
channels
-number of channel.
height
-image height.
width
-image width.
pooledH
-output image height.
pooledW
-output image width.
sizeX
-size of pooling window.
stride
-pooling stride.
start
-pooling start.
tgtData
-output data.
-
void
hl_maxpool_backward
(int frameCnt, const real *inputData, const real *outData, const real *outGrad, int channels, int height, int width, int pooledH, int pooledW, int sizeX, int stride, int start, real *targetGrad, real scaleA, real scaleB)¶ Maximum pool backward.
- Parameters
frameCnt
-batch size of input image.
inputData
-input data.
outData
-output data.
outGrad
-output grad data.
channels
-number of channel.
height
-image height.
width
-image width.
pooledH
-output image height.
pooledW
-output image width.
sizeX
-size of pooling window.
stride
-pooling stride.
start
-pooling start.
targetGrad
-output grad.
scaleA
-scale.
scaleB
-scale.
-
void
hl_avgpool_forward
(int frameCnt, const real *inputData, int channels, int height, int width, int pooledH, int pooledW, int sizeX, int stride, int start, real *tgtData)¶ Averge pool forward.
- Parameters
frameCnt
-batch size of input image.
inputData
-input data.
channels
-number of channel.
height
-image height.
width
-image width.
pooledH
-output image height.
pooledW
-output image width.
sizeX
-size of pooling window.
stride
-pooling stride.
start
-pooling start.
tgtData
-output data.
-
void
hl_avgpool_backward
(int frameCnt, const real *outGrad, int channels, int height, int width, int pooledH, int pooledW, int sizeX, int stride, int start, real *backGrad, real scaleA, real scaleB)¶ Maximum pool backward.
- Parameters
frameCnt
-batch size of input image.
outGrad
-input data.
channels
-number of channel.
height
-image height.
width
-image width.
pooledH
-output image height.
pooledW
-output image width.
sizeX
-size of pooling window.
stride
-pooling stride.
start
-pooling start.
backGrad
-output grad.
scaleA
-scale.
scaleB
-scale.
-
void
hl_CMRNorm_forward
(size_t frameCnt, const real *in, real *scale, real *out, size_t channels, size_t height, size_t width, size_t sizeX, real alpha, real beta)¶ Cross-map-respose normalize forward.
- Parameters
frameCnt
-batch size of input image.
in
-input data.
scale
-buffer.
out
-output data.
channels
-number of channel.
height
-image height.
width
-image width.
sizeX
-size.
alpha
-scale.
beta
-scale.
-
void
hl_CMRNorm_backward
(size_t frameCnt, const real *inV, const real *scale, const real *outV, const real *outDiff, real *inDiff, size_t channels, size_t height, size_t width, size_t sizeX, real alpha, real beta)¶ Cross-map-respose normalize backward.
- Parameters
frameCnt
-batch size of input image.
inV
-input data.
scale
-buffer.
outV
-output value.
outDiff
-output grad.
inDiff
-input grad.
channels
-number of channel.
height
-image height.
width
-image width.
sizeX
-size.
alpha
-scale.
beta
-scale.
Defines
-
SIGMOID_THRESHOLD_MIN
¶ sigmoid threshold maximum
-
SIGMOID_THRESHOLD_MAX
¶ sigmoid threshold minimum
-
namespace
hppl
¶
-
namespace
hppl
¶ Functions
-
__m256
relu
(const __m256 a)¶
-
__m256
sigmoid
(const __m256 a)¶
-
__m256
tanh
(const __m256 a)¶
-
__m256
linear
(const __m256 a)¶
-
__m256
relu
(const __m256 a, const __m256 b)¶
-
__m256
sigmoid
(const __m256 a, const __m256 b)¶
-
__m256
tanh
(const __m256 a, const __m256 b)¶
-
__m256
linear
(const __m256 a, const __m256 b)¶
-
__m256
Defines
-
HL_DEVICE_FUNCTIONS_CUH_
¶
-
namespace
paddle
¶ Functions
- template <class T>
-
__device__ T paddle::paddleAtomicAdd(T * address, T val)
- template <>
-
__device__ float paddle::paddleAtomicAdd(float * address, float val)
- template <>
-
__device__ double paddle::paddleAtomicAdd(double * address, double val)
Defines
-
HL_GPU_FUNCTIONS_CUH_
¶