# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from paddle import _C_ops from ..fluid import framework from ..fluid.dygraph import no_grad from ..framework import in_dygraph_mode from .optimizer import Optimizer __all__ = [] class Adadelta(Optimizer): r""" **Notes: This API does not support sparse parameter optimization.** Adadelta Optimizer. Please refer to this for details: `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD `_. The update is done as follows: .. math:: E(g_t^2) &= \rho * E(g_{t-1}^2) + (1-\rho) * g^2 learning\_rate &= \sqrt{ ( E(dx_{t-1}^2) + \epsilon ) / ( E(g_t^2) + \epsilon ) } E(dx_t^2) &= \rho * E(dx_{t-1}^2) + (1-\rho) * (-g*learning\_rate)^2 Args: learning_rate (float|Tensor|LearningRateDecay, optional): The learning rate used to update ``Parameter``. It can be a float value, a ``Tensor`` with a float type or a LearningRateDecay. The default value is 0.001. epsilon (float): a small float number for numeric stability. Default 1.0e-6. rho (float): a floating point value indicating the decay rate. Default 0.95. parameters (list|tuple, optional): List/Tuple of ``Tensor`` to update to minimize ``loss``. \ This parameter is required in dygraph mode. And you can specify different options for \ different parameter groups such as the learning rate, weight decay, etc, \ then the parameters are list of dict. Note that the learning_rate in paramter groups \ represents the scale of base learning_rate. \ The default value is None in static graph mode, at this time all parameters will be updated. weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \ It canbe a float value as coeff of L2 regularization or \ :ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`. If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already, \ the regularization setting here in optimizer will be ignored for this parameter. \ Otherwise, the regularization setting here in optimizer will take effect. \ Default None, meaning there is no regularization. grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of some derived class of ``GradientClipBase`` . There are three cliping strategies ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping. name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . Examples: .. code-block:: python import paddle inp = paddle.uniform([10, 10], dtype="float32", min=-0.1, max=0.1) linear = paddle.nn.Linear(10, 10) out = linear(inp) loss = paddle.mean(out) beta1 = paddle.to_tensor([0.9], dtype="float32") beta2 = paddle.to_tensor([0.99], dtype="float32") adadelta = paddle.optimizer.Adadelta(learning_rate=0.1, parameters=linear.parameters(), weight_decay=0.01) back = out.backward() adadelta.step() adadelta.clear_grad() #Note that the learning_rate of linear_2 is 0.01. linear_1 = paddle.nn.Linear(10, 10) linear_2 = paddle.nn.Linear(10, 10) inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1) out = linear_1(inp) out = linear_2(out) loss = paddle.mean(out) adadelta = paddle.optimizer.Adadelta( learning_rate=0.1, parameters=[{ 'params': linear_1.parameters() }, { 'params': linear_2.parameters(), 'weight_decay': 0.001, 'learning_rate': 0.1, }], weight_decay=0.01) out.backward() adadelta.step() adadelta.clear_grad() """ _avg_squared_grad_acc_str = "_avg_squared_grad" _avg_squared_update_acc_str = "_avg_squared_update" def __init__( self, learning_rate=0.001, epsilon=1.0e-6, rho=0.95, parameters=None, weight_decay=None, grad_clip=None, name=None, ): if learning_rate is None: raise ValueError("learning_rate is not set.") if epsilon is None: raise ValueError("epsilon is not set.") if rho is None: raise ValueError("rho is not set.") super().__init__( learning_rate=learning_rate, parameters=parameters, weight_decay=weight_decay, grad_clip=grad_clip, name=name, ) self._multi_precision = False self._master_weights = {} self.type = "adadelta" self._epsilon = epsilon self._rho = rho self._default_dict = { 'epsilon': epsilon, 'rho': rho, } def _create_accumulators(self, block, parameters): if not isinstance(block, framework.Block): raise TypeError("block is not instance of framework.Block.") if isinstance(parameters, dict): parameters = parameters.get('params') for p in parameters: if p.name in self._already_create_accumulater: continue if self._multi_precision and self._is_dtype_fp16_or_bf16(p.dtype): master_p = self._create_master_weight(p) self._add_accumulator(self._avg_squared_grad_acc_str, master_p) self._add_accumulator( self._avg_squared_update_acc_str, master_p ) self._already_create_accumulater.add(p.name) continue if ( self._is_dtype_fp16_or_bf16(p.dtype) and not self._multi_precision ): warnings.warn( "Accumulating with FP16/BF16 in optimizer can lead to poor accuracy or slow convergence." "Consider using multi_precision=True option of the Lars optimizer." ) self._add_accumulator(self._avg_squared_grad_acc_str, p) self._add_accumulator(self._avg_squared_update_acc_str, p) self._already_create_accumulater.add(p.name) def _append_optimize_op(self, block, param_and_grad): if isinstance(param_and_grad, dict): param_and_grad = self._update_param_group(param_and_grad) avg_squared_grad_acc = self._get_accumulator_master( self._avg_squared_grad_acc_str, param_and_grad[0] ) avg_squared_update_acc = self._get_accumulator_master( self._avg_squared_update_acc_str, param_and_grad[0] ) find_master = self._multi_precision and self._is_dtype_fp16_or_bf16( param_and_grad[0].dtype ) master_weight = ( self._master_weights[param_and_grad[0].name] if find_master else None ) if in_dygraph_mode(): with no_grad(): _C_ops.adadelta_( param_and_grad[0], param_and_grad[1], avg_squared_grad_acc, avg_squared_update_acc, master_weight, self._rho, self._epsilon, find_master, ) return None else: if not isinstance(block, framework.Block): raise TypeError("block is not instance of framework.Block.") # Create the adadelta optimizer op inputs = { "Param": param_and_grad[0], "Grad": param_and_grad[1], "AvgSquaredGrad": avg_squared_grad_acc, "AvgSquaredUpdate": avg_squared_update_acc, } outputs = { "ParamOut": param_and_grad[0], "AvgSquaredGradOut": avg_squared_grad_acc, "AvgSquaredUpdateOut": avg_squared_update_acc, } if find_master: inputs["MasterParam"] = master_weight outputs["MasterParamOut"] = master_weight adadelta_op = block.append_op( type=self.type, inputs=inputs, outputs=outputs, attrs={ "epsilon": self._epsilon, "rho": self._rho, "multi_precision": find_master, }, stop_gradient=True, ) return adadelta_op def _update_param_group(self, parameters): self._epsilon = parameters.get('epsilon', self._default_dict['epsilon']) self._rho = parameters.get('rho', self._default_dict['rho']) parameters = parameters.get('params') return parameters