// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include "paddle/fluid/framework/tensor.h" #include "paddle/fluid/framework/tensor_util.h" #include "paddle/fluid/inference/tensorrt/engine.h" #include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h" namespace paddle { namespace inference { namespace tensorrt { namespace plugin { class PReluPlugin : public PluginTensorRT { std::vector weight_; float* p_gpu_weight_; std::string mode_; protected: size_t getSerializationSize() override { return getBaseSerializationSize() + SerializedSize(mode_.c_str()) + SerializedSize(weight_) + SerializedSize(getPluginType()); } // TRT will call this func when we need to serialize the configuration of // tensorrt. // It should not be called by users. void serialize(void* buffer) override { SerializeValue(&buffer, getPluginType()); serializeBase(buffer); SerializeValue(&buffer, weight_); SerializeValue(&buffer, mode_.c_str()); } public: PReluPlugin(const float* weight, const int weight_num, std::string const& mode) : mode_(mode) { weight_.resize(weight_num); std::copy(weight, weight + weight_num, weight_.data()); } // It was used for tensorrt deserialization. // It should not be called by users. PReluPlugin(void const* serialData, size_t serialLength) { deserializeBase(serialData, serialLength); DeserializeValue(&serialData, &serialLength, &weight_); const char* prelu_mode; DeserializeValue(&serialData, &serialLength, &prelu_mode); mode_ = std::string(prelu_mode); } ~PReluPlugin() {} int initialize() override; void terminate() override; PReluPlugin* clone() const override { auto* ptr = new PReluPlugin(weight_.data(), weight_.size(), mode_); ptr->p_gpu_weight_ = p_gpu_weight_; return ptr; } const char* getPluginType() const override { return "prelu_plugin"; } int getNbOutputs() const override { return 1; } nvinfer1::Dims getOutputDimensions(int index, const nvinfer1::Dims* inputs, int nbInputDims) override; int enqueue(int batchSize, const void* const* inputs, void** outputs, void* workspace, cudaStream_t stream) override; }; #if IS_TRT_VERSION_GE(6000) class PReluPluginDynamic : public DynamicPluginTensorRT { public: PReluPluginDynamic(const float* weight, const int weight_num, std::string const& mode) : mode_(mode) { weight_.resize(weight_num); std::copy(weight, weight + weight_num, weight_.data()); } // It was used for tensorrt deserialization. // It should not be called by users. PReluPluginDynamic(void const* serialData, size_t serialLength) { deserializeBase(serialData, serialLength); DeserializeValue(&serialData, &serialLength, &weight_); const char* prelu_mode; DeserializeValue(&serialData, &serialLength, &prelu_mode); mode_ = std::string(prelu_mode); } ~PReluPluginDynamic() {} nvinfer1::IPluginV2DynamicExt* clone() const override { auto ptr = new PReluPluginDynamic(weight_.data(), weight_.size(), mode_); ptr->p_gpu_weight_ = p_gpu_weight_; return ptr; } const char* getPluginType() const override { return "prelu_plugin"; } int getNbOutputs() const override { return 1; } int initialize() override; void terminate() override; size_t getSerializationSize() const override; void serialize(void* buffer) const override; nvinfer1::DimsExprs getOutputDimensions( int output_index, const nvinfer1::DimsExprs* inputs, int nb_inputs, nvinfer1::IExprBuilder& expr_builder) override; bool supportsFormatCombination(int pos, const nvinfer1::PluginTensorDesc* inOut, int nbInputs, int nbOutputs) override; void configurePlugin(const nvinfer1::DynamicPluginTensorDesc* in, int nbInputs, const nvinfer1::DynamicPluginTensorDesc* out, int nbOutputs) override {} size_t getWorkspaceSize(const nvinfer1::PluginTensorDesc* inputs, int nbInputs, const nvinfer1::PluginTensorDesc* outputs, int nbOutputs) const override { return 0; } int enqueue(const nvinfer1::PluginTensorDesc* inputDesc, const nvinfer1::PluginTensorDesc* outputDesc, const void* const* inputs, void* const* outputs, void* workspace, cudaStream_t stream) override; nvinfer1::DataType getOutputDataType(int index, const nvinfer1::DataType* inputTypes, int nbInputs) const override; void destroy() override { delete this; } private: std::vector weight_; float* p_gpu_weight_; std::string mode_; }; #endif } // namespace plugin } // namespace tensorrt } // namespace inference } // namespace paddle