# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from eager_op_test import OpTest import paddle from paddle import fluid from paddle.fluid import core from paddle.nn import functional class TestOneHotOp(OpTest): def setUp(self): self.op_type = 'one_hot_v2' depth = 10 depth_np = np.array(10).astype('int32') dimension = 12 x_lod = [[4, 1, 3, 3]] x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))] x = np.array(x).astype('int32').reshape([sum(x_lod[0])]) out = np.zeros(shape=(np.product(x.shape), depth)).astype('float32') for i in range(np.product(x.shape)): out[i, x[i]] = 1.0 self.inputs = {'X': (x, x_lod), 'depth_tensor': depth_np} self.attrs = {'dtype': int(core.VarDesc.VarType.FP32)} self.outputs = {'Out': (out, x_lod)} def test_check_output(self): self.check_output(check_dygraph=False) class TestOneHotOp_attr(OpTest): def setUp(self): self.op_type = 'one_hot_v2' depth = 10 dimension = 12 x_lod = [[4, 1, 3, 3]] x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))] x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1]) out = np.zeros(shape=(np.product(x.shape[:-1]), 1, depth)).astype( 'float32' ) for i in range(np.product(x.shape)): out[i, 0, x[i]] = 1.0 self.inputs = {'X': (x, x_lod)} self.attrs = {'dtype': int(core.VarDesc.VarType.FP32), 'depth': depth} self.outputs = {'Out': (out, x_lod)} def test_check_output(self): self.check_output(check_dygraph=False) class TestOneHotOp_default_dtype(OpTest): def setUp(self): self.op_type = 'one_hot_v2' depth = 10 depth_np = np.array(10).astype('int32') dimension = 12 x_lod = [[4, 1, 3, 3]] x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))] x = np.array(x).astype('int32').reshape([sum(x_lod[0])]) out = np.zeros(shape=(np.product(x.shape), depth)).astype('float32') for i in range(np.product(x.shape)): out[i, x[i]] = 1.0 self.inputs = {'X': (x, x_lod), 'depth_tensor': depth_np} self.attrs = {} self.outputs = {'Out': (out, x_lod)} def test_check_output(self): self.check_output(check_dygraph=False) class TestOneHotOp_default_dtype_attr(OpTest): def setUp(self): self.op_type = 'one_hot_v2' depth = 10 dimension = 12 x_lod = [[4, 1, 3, 3]] x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))] x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1]) out = np.zeros(shape=(np.product(x.shape[:-1]), 1, depth)).astype( 'float32' ) for i in range(np.product(x.shape)): out[i, 0, x[i]] = 1.0 self.inputs = {'X': (x, x_lod)} self.attrs = {'depth': depth} self.outputs = {'Out': (out, x_lod)} def test_check_output(self): self.check_output(check_dygraph=False) class TestOneHotOpApi(unittest.TestCase): def test_api(self): num_classes = 10 self._run(num_classes) def test_api_with_depthTensor(self): num_classes = paddle.assign(np.array([10], dtype=np.int32)) self._run(num_classes) def test_api_with_dygraph(self): num_classes = 10 label = np.array( [np.random.randint(0, num_classes - 1) for i in range(6)] ).reshape([6, 1]) with fluid.dygraph.guard(): one_hot_label = functional.one_hot( x=fluid.dygraph.to_variable(label), num_classes=num_classes ) def _run(self, num_classes): label = paddle.static.data(name="label", shape=[-1, 1], dtype="int64") label.desc.set_need_check_feed(False) one_hot_label = functional.one_hot(x=label, num_classes=num_classes) place = fluid.CPUPlace() label_data = np.array( [np.random.randint(0, 10 - 1) for i in range(6)] ).reshape([6, 1]) exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) ret = exe.run( feed={ 'label': label_data, }, fetch_list=[one_hot_label], return_numpy=False, ) class BadInputTestOnehotV2(unittest.TestCase): def test_error(self): with fluid.program_guard(fluid.Program()): def test_bad_x(): label = paddle.static.data( name="label", shape=[4], dtype="float32", ) label.desc.set_need_check_feed(False) one_hot_label = functional.one_hot(x=label, num_classes=4) self.assertRaises(TypeError, test_bad_x) if __name__ == '__main__': paddle.enable_static() unittest.main()