/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/mkldnn/matmul_mkldnn_op.h" namespace { using dnnl::memory; using dnnl::primitive; using paddle::framework::DataLayout; using paddle::framework::ExecutionContext; using paddle::platform::MatMulV2MKLDNNHandler; using paddle::platform::GetMKLDNNFormat; using paddle::platform::MKLDNNDeviceContext; using paddle::platform::MKLDNNGetDataType; using paddle::platform::to_void_cast; using Tensor = paddle::framework::Tensor; using paddle::framework::DDim; using paddle::framework::GradVarName; using paddle::framework::make_ddim; using paddle::framework::vectorize; // Get row matrix shape from a vector shape. If the rank of x_dim > 1, the // original x_dim is returned. static DDim RowMatrixDimsFromVector(const DDim& x_dim) { return x_dim.size() > 1 ? x_dim : paddle::framework::make_ddim({1, x_dim[0]}); } // Get column matrix shape from a vector shape. If the ran of y_dim > 1, the // original y_dim is returned. static DDim ColumnMatrixDimsFromVector(const DDim& y_dim) { return y_dim.size() > 1 ? y_dim : paddle::framework::make_ddim({y_dim[0], 1}); } static std::vector Transpose(const std::vector& x, const std::vector& axis) { size_t in_rank = x.size(); size_t axis_size = axis.size(); auto axis_set = std::set(axis.begin(), axis.end()); PADDLE_ENFORCE_EQ(axis_set.size(), axis_size, paddle::platform::errors::InvalidArgument( "In an axis array, elements must be unique.")); PADDLE_ENFORCE_EQ(in_rank, axis_size, paddle::platform::errors::InvalidArgument( "The input dimension's size " "should be equal to the axis's size. " "But received dimension is %d, " "axis's size is %d", in_rank, axis_size)); PADDLE_ENFORCE_LT(*std::max_element(axis.begin(), axis.end()), axis_size, paddle::platform::errors::InvalidArgument( "Axis values must be ranging from 0 to (dims - 1).")); std::vector new_x(x.size()); for (size_t i = 0; i < x.size(); i++) { new_x[i] = x[axis[i]]; } return new_x; } std::vector GetInputStrides(const ExecutionContext& ctx, const std::string input_name) { auto shape = ctx.Attr>("fused_reshape_" + input_name); auto axis = ctx.Attr>("fused_transpose_" + input_name); auto input_dims = ctx.Input(input_name)->dims(); auto new_dims = input_dims; if (!shape.empty() && !axis.empty()) { new_dims = input_dims.reshape(shape).transpose(axis); } auto& MatrixDimsFromVector = input_name == "X" ? RowMatrixDimsFromVector : ColumnMatrixDimsFromVector; paddle::operators::math::MatDescriptor mat_dim = paddle::operators::math::CreateMatrixDescriptor( MatrixDimsFromVector(new_dims), 0, ctx.Attr(std::string("trans_") + static_cast(std::tolower(input_name[0])))); std::vector strides; if (!shape.empty()) { auto shape2 = input_dims.reshape(shape); strides.push_back(1); for (auto i = shape2.size() - 1; i > 0; --i) { strides.insert(strides.begin(), strides.front() * static_cast(shape2[i])); } strides = Transpose(strides, axis); if (shape.size() == 2) strides.insert(strides.begin(), static_cast(shape[0] * shape[1])); mat_dim.stride_ = strides[0]; if (mat_dim.trans_) std::swap(*strides.rbegin(), *(++strides.rbegin())); } return strides; } bool IsOutputFused(const ExecutionContext& ctx) { auto& fused_reshape_Out = ctx.Attr>("fused_reshape_Out"); auto& fused_transpose_Out = ctx.Attr>("fused_transpose_Out"); return !fused_reshape_Out.empty() && !fused_transpose_Out.empty(); } float ComputeOutputScale(const ExecutionContext& ctx) { float scale_x = ctx.Attr("Scale_x"); float scale_y = ctx.Attr("Scale_y"); bool force_fp32_out = ctx.Attr("force_fp32_output"); float scale_out = force_fp32_out ? 1.f : ctx.Attr("Scale_out"); return scale_out / (scale_x * scale_y); } template void ExecuteMatMulV2(const ExecutionContext& ctx, const MKLDNNDeviceContext& dev_ctx, const dnnl::engine onednn_engine, paddle::platform::Place cpu_place, const Tensor* x, std::vector& x_dims, bool trans_x, const Tensor* y, std::vector& y_dims, bool trans_y, Tensor* out, std::vector& out_dims, int execution_number = 0) { std::vector x_strides_override = GetInputStrides(ctx, "X"); std::vector y_strides_override = GetInputStrides(ctx, "Y"); MatMulV2MKLDNNHandler handler(onednn_engine, ctx.GetPlace(), x_dims, trans_x, y_dims, trans_y, IsOutputFused(ctx), x_strides_override, y_strides_override); const auto src_memory_p = handler.AcquireSrcMemory(x); const auto weights_memory_p = handler.AcquireWeightsMemory(y); const auto dst_memory_p = handler.AcquireDstMemory(out); auto matmul_p = handler.AcquireForwardPrimitive(); std::unordered_map matmul_args = { {DNNL_ARG_SRC, *src_memory_p}, {DNNL_ARG_WEIGHTS, *weights_memory_p}, {DNNL_ARG_DST, *dst_memory_p}}; auto& astream = MKLDNNDeviceContext::tls().get_stream(); matmul_p->execute(astream, matmul_args); astream.wait(); auto format = paddle::platform::MKLDNNFormatForSize( out->dims().size(), dnnl::memory::format_tag::nchw); out->set_layout(paddle::framework::DataLayout::kMKLDNN); out->set_format(format); } DDim GetDimForInput(const paddle::framework::ExecutionContext& ctx, const std::string& input_name) { auto shape = ctx.Attr>("fused_reshape_" + input_name); auto axis = ctx.Attr>("fused_transpose_" + input_name); auto dim = ctx.Input(input_name)->dims(); if (!shape.empty() && !axis.empty()) { dim = dim.reshape(shape).transpose(axis); } return dim; } template class MatMulV2MKLDNNKernel : public paddle::framework::OpKernel { public: void Compute(const ExecutionContext& ctx) const override { RunKernel(ctx); } private: void CalculateMatrixDims(const ExecutionContext& ctx, const std::vector& x_dims, const std::vector& y_dims, std::vector& x_bd_dims, std::vector& y_bd_dims, std::vector& out_dims, Tensor* out) const { if (x_dims.size() == 1) { x_bd_dims[x_bd_dims.size() - 1] = x_dims[0]; } else if (x_dims.size() == 2) { x_bd_dims[x_bd_dims.size() - 1] = x_dims[1]; x_bd_dims[x_bd_dims.size() - 2] = x_dims[0]; } else { for (size_t i = 0; i < x_dims.size(); ++i) { x_bd_dims[x_bd_dims.size() - x_dims.size() + i] = x_dims[i]; } } if (y_dims.size() == 1) { y_bd_dims[x_bd_dims.size() - 2] = y_dims[0]; } else if (y_dims.size() == 2) { y_bd_dims[y_bd_dims.size() - 1] = y_dims[1]; y_bd_dims[y_bd_dims.size() - 2] = y_dims[0]; } else { for (size_t i = 0; i < y_dims.size(); ++i) { y_bd_dims[y_bd_dims.size() - y_dims.size() + i] = y_dims[i]; } } if (!IsOutputFused(ctx) && x_dims.size() > 2 && y_dims.size() > 2) { for (size_t i = 0; i < x_bd_dims.size() - 2; ++i) { PADDLE_ENFORCE_EQ( x_bd_dims[i] == y_bd_dims[i] || x_bd_dims[i] == 1 || y_bd_dims[i] == 1, true, paddle::platform::errors::InvalidArgument( "Tensor dimensions are incorrect for broadcasting." "Dimensions in X and Y must be same or equal to 1, but " "received x_dim[%d]=%d and y_dims[%d]= %d", i, x_bd_dims[i], i, y_bd_dims[i])); out_dims[i] = std::max(x_bd_dims[i], y_bd_dims[i]); } out->Resize(make_ddim(out_dims)); } } void RunKernel(const ExecutionContext& ctx) const { const auto& dev_ctx = ctx.template device_context(); const auto& onednn_engine = dev_ctx.GetEngine(); auto* x = ctx.Input("X"); auto* y = ctx.Input("Y"); auto* out = ctx.Output("Out"); bool trans_x = ctx.Attr("trans_x"); bool trans_y = ctx.Attr("trans_y"); auto x_dims = vectorize(GetDimForInput(ctx, "X")); auto y_dims = vectorize(GetDimForInput(ctx, "Y")); auto out_dims = vectorize(out->dims()); int ndims = std::max(x_dims.size(), y_dims.size()); ndims = std::max(ndims, 3); std::vector x_bd_dims(ndims, 1); std::vector y_bd_dims(ndims, 1); CalculateMatrixDims(ctx, x_dims, y_dims, x_bd_dims, y_bd_dims, out_dims, out); ExecuteMatMulV2(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), x, x_bd_dims, trans_x, y, y_bd_dims, trans_y, out, out_dims); } }; template class MatMulV2GradMKLDNNKernel : public paddle::framework::OpKernel { public: void Compute(const ExecutionContext& ctx) const override { RunKernel(ctx); } private: void CalculateGradMatrixDims(const ExecutionContext& ctx, Tensor* dx_tmp, Tensor* dy_tmp, const std::vector& dx_dims, const std::vector& dy_dims, std::vector& dx_bd_dims, std::vector& dy_bd_dims) const { for (size_t i = 0; i < dx_dims.size() - 2; ++i) { if (dx_dims[i] != dy_dims[i]) { if (dx_dims[i] == 1) { dx_bd_dims[i] = dy_dims[i]; } else { dy_bd_dims[i] = dx_dims[i]; } } } dx_tmp->Resize(make_ddim(dx_bd_dims)); dx_tmp->mutable_data(ctx.GetPlace()); dy_tmp->Resize(make_ddim(dy_bd_dims)); dy_tmp->mutable_data(ctx.GetPlace()); } void ReduceSumForMatmulGradOutput( const ExecutionContext& ctx, const MKLDNNDeviceContext& dev_ctx, const dnnl::engine onednn_engine, const Tensor* dx_tmp, Tensor* dx, std::vector& dx_dims, const std::vector& squeezed_dims) const { paddle::platform::ReductionMKLDNNHandler handler( dnnl::algorithm::reduction_sum, 0.0f, 0.0f, onednn_engine, ctx.GetPlace(), dx_tmp, dx, dx_dims); auto src_memory_p = handler.AcquireSrcMemory(dx_tmp); auto dst_memory_p = handler.AcquireDstMemory(dx); std::unordered_map reduction_args = { {DNNL_ARG_SRC, *src_memory_p}, {DNNL_ARG_DST, *dst_memory_p}}; auto& astream = MKLDNNDeviceContext::tls().get_stream(); auto reduction_p = handler.AcquireForwardPrimitive(); reduction_p->execute(astream, reduction_args); astream.wait(); dx->set_format(paddle::platform::GetMKLDNNFormat( dst_memory_p->get_desc().reshape(squeezed_dims))); } std::vector ExtendDimsWithOnes(const std::vector& dims, int new_size) const { std::vector new_dims(new_size, 1); for (size_t i = 0; i < dims.size(); ++i) { new_dims[new_size - dims.size() + i] = dims[i]; } return new_dims; } void RunKernel(const ExecutionContext& ctx) const { const auto& dev_ctx = ctx.template device_context(); const auto& onednn_engine = dev_ctx.GetEngine(); auto* x = ctx.Input("X"); auto* y = ctx.Input("Y"); auto x_dims = vectorize(x->dims()); auto y_dims = vectorize(y->dims()); bool is_broadcast = true; if (x_dims.size() <= 2 || y_dims.size() <= 2) { is_broadcast = false; } else if (x_dims.size() != y_dims.size()) { is_broadcast = true; } else { is_broadcast = !std::equal(x_dims.cbegin(), x_dims.cbegin() + x_dims.size() - 2, y_dims.cbegin()); } // if no broadcasting is needed, we can simply use matmul's grad and avoid // using reduce_sum if (!is_broadcast) { matmul_v1_grad_mkldnn_kernel.Compute(ctx); return; } auto* dout = ctx.Input(GradVarName("Out")); auto* dx = ctx.Output(GradVarName("X")); auto* dy = ctx.Output(GradVarName("Y")); bool trans_x = ctx.Attr("trans_x"); bool trans_y = ctx.Attr("trans_y"); auto dout_dims = vectorize(dout->dims()); size_t ndims = std::max(x->dims().size(), y->dims().size()); ndims = std::max(ndims, 3); if (x_dims.size() != ndims) { x_dims = ExtendDimsWithOnes(x_dims, ndims); } else if (y_dims.size() != ndims) { y_dims = ExtendDimsWithOnes(y_dims, ndims); } // in broadcasting scenario new memory is required because // reduce sum must be calculated upon broadcasted dims Tensor dx_tmp, dy_tmp; std::vector dx_bd_dims(x_dims); std::vector dy_bd_dims(y_dims); CalculateGradMatrixDims(ctx, &dx_tmp, &dy_tmp, x_dims, y_dims, dx_bd_dims, dy_bd_dims); if (trans_x && trans_y) { ExecuteMatMulV2(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), y, y_dims, true, dout, dout_dims, true, &dx_tmp, dx_bd_dims, 1); ExecuteMatMulV2(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), dout, dout_dims, true, x, x_dims, true, &dy_tmp, dy_bd_dims, 2); } else if (trans_x) { ExecuteMatMulV2(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), y, y_dims, false, dout, dout_dims, true, &dx_tmp, dx_bd_dims, 1); ExecuteMatMulV2(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), x, x_dims, false, dout, dout_dims, false, &dy_tmp, dy_bd_dims, 2); } else if (trans_y) { ExecuteMatMulV2(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), dout, dout_dims, false, y, y_dims, false, &dx_tmp, dx_bd_dims, 1); ExecuteMatMulV2(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), dout, dout_dims, true, x, x_dims, false, &dy_tmp, dy_bd_dims, 2); } else { ExecuteMatMulV2(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), dout, dout_dims, false, y, y_dims, true, &dx_tmp, dx_bd_dims, 1); ExecuteMatMulV2(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), x, x_dims, true, dout, dout_dims, false, &dy_tmp, dy_bd_dims, 2); } if (x_dims != dx_bd_dims) { ReduceSumForMatmulGradOutput(ctx, dev_ctx, onednn_engine, &dx_tmp, dx, x_dims, paddle::framework::vectorize(x->dims())); } else { *dx = std::move(dx_tmp); } if (y_dims != dy_bd_dims) { ReduceSumForMatmulGradOutput(ctx, dev_ctx, onednn_engine, &dy_tmp, dy, y_dims, paddle::framework::vectorize(y->dims())); } else { *dy = std::move(dy_tmp); } dx->Resize(x->dims()); dy->Resize(y->dims()); } private: paddle::operators::MatMulGradMKLDNNKernel matmul_v1_grad_mkldnn_kernel; }; } // anonymous namespace REGISTER_OP_KERNEL(matmul_v2, MKLDNN, ::paddle::platform::CPUPlace, MatMulV2MKLDNNKernel, MatMulV2MKLDNNKernel); REGISTER_OP_KERNEL(matmul_v2_grad, MKLDNN, ::paddle::platform::CPUPlace, MatMulV2GradMKLDNNKernel, MatMulV2GradMKLDNNKernel);