/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #ifdef __NVCC__ #include #endif #ifdef __HIPCC__ #include namespace cub = hipcub; #endif #include "paddle/fluid/operators/sequence_ops/sequence_softmax_op.h" #include "paddle/phi/kernels/funcs/math.h" namespace paddle { namespace operators { using LoDTensor = phi::DenseTensor; template using BlockReduce = cub::BlockReduce; template using BlockReduceTempStorage = typename BlockReduce::TempStorage; template __global__ void sequence_softmax_kernel(const T *in_data, const size_t *ref_lod, const size_t src_hight, T *out_data) { __shared__ BlockReduceTempStorage temp_storage; __shared__ T shared_max_data; __shared__ T shared_sum_data; for (int i = blockIdx.x; i < src_hight; i += gridDim.x) { size_t start = ref_lod[i]; size_t span = ref_lod[i + 1] - start; // Find the max ele T max_ele = -FLT_MAX; for (int tid = threadIdx.x; tid < span; tid += blockDim.x) { T ele = in_data[start + tid]; max_ele = max_ele > ele ? max_ele : ele; } max_ele = BlockReduce(temp_storage).Reduce(max_ele, cub::Max()); if (threadIdx.x == 0) { shared_max_data = max_ele; } __syncthreads(); // sum T sum_data = 0; for (int tid = threadIdx.x; tid < span; tid += blockDim.x) { T ele = in_data[start + tid]; sum_data += phi::funcs::real_exp(ele - shared_max_data); } sum_data = BlockReduce(temp_storage).Reduce(sum_data, cub::Sum()); if (threadIdx.x == 0) { shared_sum_data = sum_data; } __syncthreads(); // get final resit for (int tid = threadIdx.x; tid < span; tid += blockDim.x) { T ele = in_data[start + tid]; ele = phi::funcs::real_exp(ele - shared_max_data) / shared_sum_data; out_data[start + tid] = ele; } } } template __global__ void sequence_softmax_grad_kernel(const T *softmax_grad_data, const T *softmax_data, const size_t *ref_lod, const size_t src_hight, T *dx_data) { __shared__ BlockReduceTempStorage temp_storage; __shared__ T shared_data; for (int i = blockIdx.x; i < src_hight; i += gridDim.x) { size_t start = ref_lod[i]; size_t span = ref_lod[i + 1] - start; T result = 0; for (int tid = threadIdx.x; tid < span; tid += blockDim.x) { size_t idx = start + tid; T s_g_d = softmax_grad_data[idx]; T s_d = softmax_data[idx]; result += s_g_d * s_d; } result = BlockReduce(temp_storage).Reduce(result, cub::Sum()); if (threadIdx.x == 0) { shared_data = result; } __syncthreads(); for (int tid = threadIdx.x; tid < span; tid += blockDim.x) { size_t idx = start + tid; T s_g_d = softmax_grad_data[idx]; T s_d = softmax_data[idx]; dx_data[idx] = (s_g_d - shared_data) * s_d; } } } template struct SequenceSoftmaxFunctor { void operator()(const phi::GPUContext &context, const LoDTensor &x, const phi::Vector &ref_lod, /*referenced lod*/ LoDTensor *out) { int height = ref_lod.size() - 1; const int kThreadsPerBlock = 32; int thread_x = kThreadsPerBlock; int max_threads = context.GetMaxPhysicalThreadCount(); int max_blocks = std::max(max_threads / kThreadsPerBlock, 1); dim3 block_size(thread_x); dim3 grid_size(max_blocks); phi::MixVector mixv_ref_lod(&ref_lod); sequence_softmax_kernel <<>>( x.data(), mixv_ref_lod.CUDAData(context.GetPlace()), height, out->mutable_data(context.GetPlace())); } }; template struct SequenceSoftmaxGradFunctor { void operator()(const phi::GPUContext &context, const LoDTensor &dout, const LoDTensor &out, const phi::Vector &ref_lod, /*referenced lod*/ LoDTensor *dx) { size_t height = ref_lod.size() - 1; const int kThreadsPerBlock = 32; int thread_x = kThreadsPerBlock; int max_threads = context.GetMaxPhysicalThreadCount(); int max_blocks = std::max(max_threads / kThreadsPerBlock, 1); dim3 block_size(thread_x); dim3 grid_size(max_blocks); phi::MixVector mixv_ref_lod(&ref_lod); sequence_softmax_grad_kernel <<>>( dout.data(), out.data(), mixv_ref_lod.CUDAData(context.GetPlace()), height, dx->mutable_data(context.GetPlace())); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; PD_REGISTER_STRUCT_KERNEL(sequence_softmax, GPU, ALL_LAYOUT, ops::SequenceSoftmaxKernel, float, double) {} PD_REGISTER_STRUCT_KERNEL(sequence_softmax_grad, GPU, ALL_LAYOUT, ops::SequenceSoftmaxGradKernel, float, double) {}