# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import uuid import numpy as np import paddle from numpy.random import randint, randn from paddle.incubate.autograd import primops, primx from paddle.incubate.autograd import utils as prim_utils import config import utils paddle.enable_static() @utils.place(config.DEVICES) @utils.parameterize( (utils.TEST_CASE_NAME, 'op', 'args', 'kwargs', 'expected_shape', 'expected_dtype'), ( ('add', primops.add, (randn(2, 3), randn(2, 3)), {}, (2, 3), 'float64'), ('sub', primops.sub, (randn(2, 3), randn(2, 3)), {}, (2, 3), 'float64'), ('mul', primops.mul, (randn(2, 3), randn(2, 3)), {}, (2, 3), 'float64'), ('div', primops.div, (randn(2, 3), randn(2, 3)), {}, (2, 3), 'float64'), ('sub', primops.sub, (randn(2, 3), randn(2, 3)), {}, (2, 3), 'float64'), ('sqrt', primops.sqrt, randn(2, 3), {}, (2, 3), 'float64'), ('tanh', primops.tanh, randn(2, 3), {}, (2, 3), 'float64'), ('sin', primops.sin, randn(2, 3), {}, (2, 3), 'float64'), ('cos', primops.cos, randn(2, 3), {}, (2, 3), 'float64'), ('exp', primops.exp, randn(2, 3), {}, (2, 3), 'float64'), ('log', primops.log, randn(2, 3), {}, (2, 3), 'float64'), ('reshape', primops.reshape, randn(2, 3), { 'shape': (3, 2) }, (3, 2), 'float64'), ('broadcast', primops.broadcast, randn(2), { 'shape': (3, 2) }, (3, 2), 'float64'), ('transpose', primops.transpose, randn(2, 3), { 'axis': (1, 0) }, (3, 2), 'float64'), ('concat_axis0', primops.concat, ((randn(2, 3), randn(2, 3)), ), { 'axis': 0 }, (4, 3), 'float64'), ('concat_axis1', primops.concat, ((randn(2, 3), randn(2, 3)), ), { 'axis': 1 }, (2, 6), 'float64'), ('reduce_axis1', primops.reduce, randn(2, 3), { 'axis': (1, ) }, (2, ), 'float64'), ('reduce_axis01', primops.reduce, randn(2, 3), { 'axis': (0, 1) }, (1, ), 'float64'), ('split', primops.split, randn(2, 3), { 'num_or_sections': [1, 2], 'axis': 1 }, ((2, 1), (2, 2)), ('float64', 'float64')), ('matmul', primops.matmul, (randn(2, 3), randn(3, 2)), {}, (2, 2), 'float64'), ('slice_select', primops.slice_select, randn(3, 2), { 'axis': [0], 'starts': [0], 'ends': [2], 'strides': [1] }, (2, 2), 'float64'), ('slice_assign', primops.slice_assign, (randn(2, 3), randn(2, 2)), { 'axis': [1], 'starts': [1], 'ends': [3], 'strides': [1] }, (2, 3), 'float64'), ('gather', primops.gather, (randn(3, 2), randint(0, 2, (5, ), np.int32)), { 'axis': 0 }, (5, 2), 'float64'), ('scatter_add', primops.scatter_add, (randn(3, 2), randn(5, 2), randint(0, 2, (5, ), np.int32)), { 'axis': 0 }, (3, 2), 'float64'), ('fill_const', primops.fill_const, (), { 'value': 10, 'shape': (3, 2), 'dtype': paddle.float32 }, (3, 2), 'float32'), ('neg', primops.neg, randn(2, 3), {}, (2, 3), 'float64'), ('select', primops.select, (randn(2, 3) > 0, randn(2, 3), randn(2, 3)), {}, (2, 3), 'float64'), ('eq', primops.eq, (randn(2, 3), randn(2, 3)), {}, (2, 3), 'bool'), ('pow', primops.pow, (randn(2, 3), randn(2, 3)), {}, (2, 3), 'float64'), ('max', primops.max, (randn(2, 3), randn(2, 3)), {}, (2, 3), 'float64'), )) class TestPrimops(unittest.TestCase): @classmethod def setUpClass(cls): paddle.enable_static() @classmethod def tearDownClass(cls): paddle.disable_static() def test_prim_ops(self): program = paddle.static.Program() with paddle.static.program_guard(program): args = self._as_tuple(self.args) args = self.arr2var(args) results = self.op(*args, **self.kwargs) results = self._as_tuple(results) expected_shape = self._as_tuple(self.expected_shape) expected_dtype = self._as_tuple(self.expected_dtype) for r, shape, dtype in zip(results, expected_shape, expected_dtype): self.assertEqual(r.shape, shape) self.assertEqual(str(r.dtype).split('.')[1], dtype) def arr2var(self, arr): """convert numpy ndarray to paddle Variable recursively.""" return [ paddle.static.data(f'x{uuid.uuid4()}', v.shape, v.dtype) if isinstance(v, np.ndarray) else self.arr2var(v) for v in arr ] def _as_tuple(self, input): if isinstance(input, (tuple, list)) and len(input) == 0: return input if not isinstance(input, (tuple, list)) or all( isinstance(i, int) for i in input): return (input, ) return input if __name__ == '__main__': unittest.main()