/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/platform/device/gpu/gpu_dnn.h" #include "paddle/phi/backends/gpu/gpu_context.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/funcs/math_function.h" #include "paddle/phi/kernels/funcs/pooling.h" #include "paddle/phi/kernels/gpudnn/pool_gpudnn.h" #include "paddle/phi/kernels/pool_grad_kernel.h" #include "paddle/phi/kernels/pool_kernel.h" #ifdef PADDLE_WITH_HIP #include "paddle/phi/kernels/impl/pool_grad_kernel_impl.h" // PoolGradRawGPUDNNKernel will call PoolGradRawKernel for pooling type "max" in ROCm #endif namespace phi { template void PoolGradRawGPUDNNKernel(const Context& ctx, const DenseTensor& x, const DenseTensor& out, const DenseTensor& dout, const std::vector& kernel_size, const std::vector& strides, const std::vector& paddings, bool exclusive, const std::string& data_format, const std::string& pooling_type, bool global_pooling, bool adaptive, const std::string& padding_algorithm, DenseTensor* dx) { PADDLE_ENFORCE_EQ( paddle::platform::is_gpu_place(ctx.GetPlace()), true, errors::InvalidArgument("Pool operator CUDA kernel must use CUDAPlace " "rather than CPUPlace.")); const DenseTensor* input = &x; const DenseTensor* output = &out; const DenseTensor* output_grad = &dout; DenseTensor* input_grad = dx; std::vector paddings_ = paddings; std::vector kernel_size_ = kernel_size; const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC"); #ifdef PADDLE_WITH_HIP if (pooling_type == "max") { PoolGradRawKernel(ctx, x, out, dout, kernel_size, strides, paddings_, exclusive, data_format, pooling_type, global_pooling, adaptive, padding_algorithm, dx); return; } #endif // update paddings auto in_x_dims = input->dims(); DDim data_dims; if (channel_last) { data_dims = slice_ddim(in_x_dims, 1, in_x_dims.size() - 1); } else { data_dims = slice_ddim(in_x_dims, 2, in_x_dims.size()); } funcs::UpdatePadding(&paddings_, global_pooling, adaptive, padding_algorithm, data_dims, strides, kernel_size_); if (data_dims.size() * 2 == static_cast(paddings_.size())) { for (int i = 0; i < data_dims.size(); ++i) { paddings_.erase(paddings_.begin() + i + 1); } } if (global_pooling) { funcs::UpdateKernelSize(&kernel_size_, data_dims); } // ------- tensor grad -------------- DenseTensor transformed_input(input->type()); DenseTensor transformed_output(output->type()); DenseTensor transformed_output_grad(output_grad->type()); ctx.template Alloc(input_grad); DenseTensor transformed_input_grad(input_grad->type()); GPUDNNDataLayout layout; const std::string str_NCHW = "NCHW", str_NHWC = "NHWC"; const std::string str_NCDHW = "NCDHW", str_NDHWC = "NDHWC"; if (data_format == str_NDHWC) { layout = GPUDNNDataLayout::kNCDHW; std::vector axis{0, 4, 1, 2, 3}; // input transformed_input.Resize(input->dims()); auto in_dims_vec = vectorize(input->dims()); in_dims_vec[1] = input->dims()[4]; in_dims_vec[2] = input->dims()[1]; in_dims_vec[3] = input->dims()[2]; in_dims_vec[4] = input->dims()[3]; transformed_input.Resize(make_ddim(in_dims_vec)); ctx.Alloc(&transformed_input, input->type()); funcs::Transpose trans5; trans5(ctx, *input, &transformed_input, axis); // output transformed_output.Resize(output->dims()); auto out_dims_vec = vectorize(output->dims()); out_dims_vec[1] = output->dims()[4]; out_dims_vec[2] = output->dims()[1]; out_dims_vec[3] = output->dims()[2]; out_dims_vec[4] = output->dims()[3]; transformed_output.Resize(make_ddim(out_dims_vec)); ctx.Alloc(&transformed_output, output->type()); funcs::Transpose trans5_v2; trans5_v2(ctx, *output, &transformed_output, axis); // output grad transformed_output_grad.Resize(make_ddim(out_dims_vec)); ctx.Alloc(&transformed_output_grad, output_grad->type()); funcs::Transpose trans5_v3; trans5_v3(ctx, *output_grad, &transformed_output_grad, axis); // input grad transformed_input_grad.Resize(make_ddim(in_dims_vec)); #ifdef PADDLE_WITH_HIP // MIOPEN not support NHWC data layout } else if (data_format == str_NHWC) { layout = GPUDNNDataLayout::kNCHW; std::vector axis{0, 3, 1, 2}; // input transformed_input.Resize(input->dims()); auto in_dims_vec = vectorize(input->dims()); in_dims_vec[1] = input->dims()[3]; in_dims_vec[2] = input->dims()[1]; in_dims_vec[3] = input->dims()[2]; transformed_input.Resize(make_ddim(in_dims_vec)); ctx.Alloc(&transformed_input, input->type()); funcs::Transpose trans4; trans4(ctx, *input, &transformed_input, axis); // output transformed_output.Resize(output->dims()); auto out_dims_vec = vectorize(output->dims()); out_dims_vec[1] = output->dims()[3]; out_dims_vec[2] = output->dims()[1]; out_dims_vec[3] = output->dims()[2]; transformed_output.Resize(make_ddim(out_dims_vec)); ctx.Alloc(&transformed_output, output->type()); funcs::Transpose trans4_v2; trans4_v2(ctx, *output, &transformed_output, axis); // output grad transformed_output_grad.Resize(make_ddim(out_dims_vec)); ctx.Alloc(&transformed_output_grad, output_grad->type()); funcs::Transpose trans4_v3; trans4_v3(ctx, *output_grad, &transformed_output_grad, axis); // input grad transformed_input_grad.Resize(make_ddim(in_dims_vec)); #endif } else { layout = GetLayoutFromStr(data_format); transformed_input = *input; transformed_output = *output; transformed_output_grad = *output_grad; transformed_input_grad = *input_grad; } const T* input_data = transformed_input.data(); const T* output_data = transformed_output.data(); const T* output_grad_data = transformed_output_grad.data(); // ------------------- cudnn descriptors --------------------- ScopedTensorDescriptor input_desc; ScopedTensorDescriptor output_desc; ScopedPoolingDescriptor pool_desc; #ifdef PADDLE_WITH_HIP miopenTensorDescriptor_t cudnn_input_desc = input_desc.descriptor( layout, vectorize(transformed_input.dims())); miopenTensorDescriptor_t cudnn_output_desc = output_desc.descriptor( layout, vectorize(transformed_output.dims())); #else cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor( layout, vectorize(transformed_input.dims())); cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor( layout, vectorize(transformed_output.dims())); #endif PoolingMode pooling_mode; if (pooling_type == "max") { if (FLAGS_cudnn_deterministic) { pooling_mode = PoolingMode::kMaximumDeterministic; } else { pooling_mode = PoolingMode::kMaximum; } } else { pooling_mode = exclusive ? PoolingMode::kAverageExclusive : PoolingMode::kAverageInclusive; } #ifdef PADDLE_WITH_HIP miopenPoolingDescriptor_t cudnn_pool_desc = pool_desc.descriptor(pooling_mode, kernel_size_, paddings_, strides); #else cudnnPoolingDescriptor_t cudnn_pool_desc = pool_desc.descriptor(pooling_mode, kernel_size_, paddings_, strides); #endif // ------------------- cudnn pool algorithm --------------------- auto handle = ctx.cudnn_handle(); ScalingParamType alpha = 1.0f, beta = 0.0f; if (input_grad) { T* input_grad_data = ctx.template Alloc(&transformed_input_grad); // Because beta is zero, it is unnecessary to reset input_grad. #ifdef PADDLE_WITH_HIP char* pool_workspace; size_t pool_worksize = 0; PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenPoolingGetWorkSpaceSizeV2( cudnn_pool_desc, cudnn_output_desc, &pool_worksize)); PADDLE_ENFORCE_GPU_SUCCESS(hipMalloc(&pool_workspace, pool_worksize)); PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenPoolingBackward(handle, cudnn_pool_desc, &alpha, cudnn_output_desc, output_data, cudnn_output_desc, output_grad_data, cudnn_input_desc, input_data, &beta, cudnn_input_desc, input_grad_data, pool_workspace)); PADDLE_ENFORCE_GPU_SUCCESS(hipFree(pool_workspace)); #else PADDLE_ENFORCE_GPU_SUCCESS(dynload::cudnnPoolingBackward(handle, cudnn_pool_desc, &alpha, cudnn_output_desc, output_data, cudnn_output_desc, output_grad_data, cudnn_input_desc, input_data, &beta, cudnn_input_desc, input_grad_data)); #endif if (data_format == str_NDHWC) { std::vector axis{0, 2, 3, 4, 1}; funcs::Transpose trans5_v4; trans5_v4(ctx, transformed_input_grad, input_grad, axis); } #ifdef PADDLE_WITH_HIP // MIOPEN not support NHWC data layout if (data_format == str_NHWC) { std::vector axis{0, 2, 3, 1}; funcs::Transpose trans4_v4; trans4_v4(ctx, transformed_input_grad, input_grad, axis); } #endif } } template void Pool2dGradGPUDNNKernel(const Context& ctx, const DenseTensor& x, const DenseTensor& out, const DenseTensor& dout, const std::vector& kernel_size, const std::vector& strides, const std::vector& paddings, bool ceil_mode, bool exclusive, const std::string& data_format, const std::string& pooling_type, bool global_pooling, bool adaptive, const std::string& padding_algorithm, DenseTensor* dx) { PoolGradRawGPUDNNKernel(ctx, x, out, dout, kernel_size, strides, paddings, exclusive, data_format, pooling_type, global_pooling, adaptive, padding_algorithm, dx); } template void Pool2dDoubleGradGPUDNNKernel(const Context& ctx, const DenseTensor& x, const std::vector& kernel_size, const std::vector& strides, const std::vector& paddings, bool ceil_mode, bool exclusive, const std::string& data_format, const std::string& pooling_type, bool global_pooling, bool adaptive, const std::string& padding_algorithm, DenseTensor* out) { if (pooling_type == "max") { PADDLE_THROW( errors::InvalidArgument("Pool op grad grad only supports avgpool.")); } else { Pool2dGPUDNNKernel(ctx, x, kernel_size, strides, paddings, ceil_mode, exclusive, data_format, pooling_type, global_pooling, adaptive, padding_algorithm, out); } } template void Pool3dGradGPUDNNKernel(const Context& ctx, const DenseTensor& x, const DenseTensor& out, const DenseTensor& dout, const std::vector& kernel_size, const std::vector& strides, const std::vector& paddings, bool ceil_mode, bool exclusive, const std::string& data_format, const std::string& pooling_type, bool global_pooling, bool adaptive, const std::string& padding_algorithm, DenseTensor* dx) { PoolGradRawGPUDNNKernel(ctx, x, out, dout, kernel_size, strides, paddings, exclusive, data_format, pooling_type, global_pooling, adaptive, padding_algorithm, dx); } } // namespace phi using phi::dtype::float16; #ifdef PADDLE_WITH_HIP // MIOPEN do not support double PD_REGISTER_KERNEL(pool2d_grad, GPUDNN, ALL_LAYOUT, phi::Pool2dGradGPUDNNKernel, float, float16) {} PD_REGISTER_KERNEL(pool2d_double_grad, GPUDNN, ALL_LAYOUT, phi::Pool2dDoubleGradGPUDNNKernel, float, float16) {} PD_REGISTER_KERNEL(pool3d_grad, GPUDNN, ALL_LAYOUT, phi::Pool3dGradGPUDNNKernel, float, float16) {} #else PD_REGISTER_KERNEL(pool2d_grad, GPUDNN, ALL_LAYOUT, phi::Pool2dGradGPUDNNKernel, float, double, float16) {} PD_REGISTER_KERNEL(pool2d_double_grad, GPUDNN, ALL_LAYOUT, phi::Pool2dDoubleGradGPUDNNKernel, float, double, float16) {} PD_REGISTER_KERNEL(pool3d_grad, GPUDNN, ALL_LAYOUT, phi::Pool3dGradGPUDNNKernel, float, double, float16) {} #endif